Skip to main content

Junyi Zhu, Dr. rer. nat.

Academic Title:

Assistant Professor

Primary Appointment:

Medicine

Location:

670 West Baltimore St, Baltimore, MD 21201

Education and Training

  • B.Sc. in Biotechnology, Hunan University, China, 2003-2007
  • M.Sc. in Biomedicine, East China Normal University, China, 2007-2010
  • Dr.rer.nat in Cellular & Molecular Neuroscience (equivalent to Ph.D.), Eberhard-Karls University of Tübingen, Germany, 2010-2014 
  • Postdoc Fellow, Children’s National Medical Center, U.S., 2015-2017
  • Postdoc Fellow, University of California Los Angeles,U.S., 2017-2019

Biosketch

Dr. Zhu's research interest is in the use of Drosophila as a model to study human disease mechanisms and treatment approaches. Dr. Zhu received his Ph.D. training in the Hertie Institute for Clinical Brain Research, Tübingen University in Germany, working on a fly model carrying a mutant allele of the human gene Mortalin identified from German and Spanish Parkinson’s Disease patients. He generated the first Drosophila model for Mortalin-related Parkinson’s Disease, and investigated molecular disease mechanisms and drug treatment approaches using this model. After completing his Ph.D. in Germany, He joined Dr. Zhe Han’s laboratory as a postdoc fellow, to continue working on Drosophila models of human diseases, especially in the areas of heart, kidney and leukemia. In 2017, He joined Dr. Ming Guo’s laboratory in University of California Los Angeles to study heart and kidney pathology caused by deleterious mitochondrial DNA mutations using Drosophila as a model system. In 2019, He became a faculty member as Assistant Professor in University of Maryland School of Medicine.

Research/Clinical Keywords

Drosophila, Heart, Kidney, Congenital heart disease, Nephrotic syndrome, Genetic kidney diseases

Highlighted Publications

  1. Zhu, J.Y.#, Lee, H., Huang, X., van de Leemput, J., Han, Z.# (2023) Distinct Roles for COMPASS Core Subunits Set1, Trx, and Trr in the Epigenetic Regulation of Drosophila Heart Development. International Journal of Molecular Sciences 24 (24): 17314 (#Co-corresponding author)
  2. Zhu, J.Y., Lee, J.G., Fu, Y., van de Leemput, J., Ray, P., Han, Z. (2023) APOL1-G2 accelerates nephrocyte cell death by inhibiting the autophagy pathway. Disease Models & Mechanisms Online ahead of print
  3. Fu, Y.*, Lee, J.G.*, Zhu, J.Y.*, Wen, P., van de Leemput, J., Ray, P., Han, Z. (2023) A SNARE protective pool antagonizes APOL1 renal toxicity in Drosophila nephrocytes. Cell & Bioscience 13(1): 199 (*equal contribution)
  4. Zhu, J.Y.#, Liu, C., Huang, X., van de Leemput, J., Lee, H., Han, Z.# (2023) H3K36 di-methylation marks, mediated by Ash1 in complex with Caf1-55 and MRG15, are required during Drosophila heart development. Journal of Cardiovascular Development and Disease 10(7): 307 (#Co-corresponding author)
  5. Zhu, J.Y.#, van de Leemput, J., Han, Z.# (2023) The roles of histone lysine methyltransferases in heart development and disease. Journal of Cardiovascular Development and Disease 10(7): 305 (#Co-corresponding author)
  6. Zhu, J.Y., Wang, G., Huang, X., Lee, H., Lee, J.G., Yang, P., van de Leemput, J., Huang, W., Kane, M.A., Yang, P., Han, Z. (2022) SARS-CoV-2 Nsp6 causes cardiac defects through 1 MGA/MAX complex2 mediated increased glycolysis. Communications Biology 5(1): 1039
  7. Wen, H.*, Zhu, J.Y.*, Fu, Y., van de Leemput, J., Han, Z. (2022) Lpt, trr and Hcf regulate histone mono- and dimethylation that are essential for Drosophila heart development. Developmental Biology 490:53-65 (*equal contribution)
  8. Zhu, J.Y., Hannan S.B., Drager N., Vereshchagina, N., Krahl, A., Fu, Y., Elliott, C.J., Han, Z., Jahn, T.R., Rasse, T.M. (2021) Autophagy inhibition rescues structural and functional defects caused by the loss of mitochondrial chaperone Hsc70-5 in Drosophila. Autophagy 17(10):3160-3173
  9. Zhu, J.Y.*, Huang, X.*, Fu, Y.*, Richman, A., Wang, Y., Zheng, P., Liu, Y., Han, Z. (2021) Pharmacological or genetic inhibition of hypoxia signaling attenuates oncogenic Ras-induced cancer phenotypes. Disease Models & Mechanisms 15(2) (*equal contribution)
  10. Zhu, J.Y., Lee, J.G., van de Leemput, J., Lee, H., Han, Z. (2021) Functional analysis of SARS-CoV-2 proteins in Drosophila identifies Orf6-induced pathogenicity attenuated by Selinexor. Cell & Bioscience 11(1): 59
  11. Zhao, F.*, Zhu, J.Y.*, Richman, A., Fu, Y., Huang, W., Chen, N., Pan, X., Yi, C., Ding, X., Wang, S., Wang, P., Nie, X., Huang, J., Yang, Y., Yu, Z., Han, Z., (2019) Mutations in NUP160 Are Implicated in Steroid-Resistant Nephrotic Syndrome. Journal of the American Society of Nephrology 30(5):840-853. (*equal contribution)
  12. Zhu, J.Y.*, Fu, Y.*, Nettleton, M., Richman, A., Han, Z. (2017) High throughput in vivo functional validation of candidate congenital heart disease genes in Drosophila. eLife 6: e22617. (*equal contribution)
  13. Zhu, J.Y.*, Fu, Y.*, Richman, A., Zhao, Z., Ray, P.E., Han, Z. (2017) A personalized Drosophila model of COQ2 nephropathy rescued by the wild-type human COQ2 allele and dietary Q10 supplementation. Journal of the American Society of Nephrology 28(9): 2607-2617. (*equal contribution)
  14. Zhu, J.Y., Heidersbach, A., Kathiriya, I.S., Garay, B., Carver-Moore, K., Ivey, K.N., Srivastava, D., Han, Z., King, I.N. (2017) The E3 Ubiquitin Ligase Nedd4/Nedd4L is Directly Regulated by microRNA-1. Development 144(5): 866-875.
  15. Zhu, J.Y.*, Fu, Y.*, Richman, A., Han, Z. (2017) Validating Candidate Congenital Heart Disease Genes in Drosophila. Bio-Protocol 7(12). (*equal contribution)
  16. Fu, Y. *, Zhu, J.Y.*, Richman A., Zhang, Y., Xie, X., Das, J.R., Li, J., Ray, P.E., Han, Z. (2017) APOL1-G1 in Drosophila nephrocytes induces hypertrophy and accelerates cell death. Journal of the American Society of Nephrology 28(4): 1106-1116. (*equal contribution)
  17. Fu, Y.*, Zhu, J.Y.*, Richman, A., Zhao, Z., Zhang, F., Ray, P.E., Han, Z., (2017) A Drosophila model system to assess the function of human monogenic podocyte mutations that cause nephrotic syndrome. Human Molecular Genetics 26(4): 768-780. (*equal contribution)
  18. Fu, Y.*, Zhu, J.Y.*, Zhang, F.*, Richman, A, Zhao, Z., Han, Z., (2017) Comprehensive functional analysis of Rab GTPases in Drosophila. Cell & Tissue Research 368(3): 615-627. (*equal contribution)
  19. Zhu, J.Y., Vereshchagina, N., Sreekumar, V., Burbulla, L.F., Costa, A.C., Daub, K.J., Woitalla D., Miguel Martins, L., Krüger, R., Rasse T.M., (2013)  Knockdown of Hsc70-5/Mortalin induces loss of synaptic mitochondria in a Drosophila Parkinson’s disease model. PLoS ONE 8(12): e83714.

Additional Publication Citations

  1. Yu, R., Cao, X., Sun, L., Zhu, J.Y., Wasko, B., Liu, W., Crutcher, E., Liu, H., Kaeberlein, M., Han, Z., Dang, W. (2021) High-throughput lifespan screen identified a class-II histone deacetylase regulating aging through trehalose metabolism. Nature Communications 12(1): 1981
  2. Wen, P., Fu, Y., Zhang, F., Zhu, J.Y., Han, Z., (2020) Exocyst Genes Are Essential for Recycling Membrane Proteins and Maintaining Slit Diaphragm in Drosophila Nephrocytes. Journal of the American Society of Nephrology 31(5): 1024-1034
  3. Wang, Y., Liu, Y.Z., Tang, W., Zhu, J.Y., Chen, Q., Wang, Z., (2018) NMDA receptor-gated visual responses in hippocampal CA1 neurons. Journal of Physiology 596(10): 1965-1979.
  4. Basu, M., Zhu, J.Y., LaHaye S., Majumdar U., Jiao K., Han, Z., Grag, V. (2017) Epigenetic mechanism underlying maternal diabetes-associated risk of congenital heart disease. JCI Insight 2(20).
  5. Patel M.V., Zhu, J.Y., Jiang, Z., Richman, A., Van Berkum M.F., Han, Z. (2016) Gia/Mthl5 is an aorta specific GPCR required for Drosophila heart tube morphology and normal pericardial cell positioning. Developmental Biology 414(1): 100-107.
  6. Chen, Z., Zhu, J.Y., Fu, Y., Richman, A., Han, Z. (2016) Wnt4 is required for ostia development in the Drosophila heart. Developmental Biology 413(2): 188-198.
  7. Gee, H.Y., Zhang F., Ashraf, S., Kohl, S., Sadowski C., Vega-Warner, V., Zhou, W., Lovric, S., Fang H., Nettleton, M., Zhu, J.Y., Hoefele, J., Weber, L., Podracka, L., Boor, A., Fehrebach, H., Innis, J., Washburn, J., Levy, S., Lifton, R.P., Otto, E., Han, Z., Hildebrandt, F. (2015) KANK deficiency leads to defective podocyte function and nephrotic syndrome. Journal of Clinical Investigation 125: 2375-2384.