Skip to main content

Li Zhang, PhD

Academic Title:

Professor

Primary Appointment:

Physiology

Secondary Appointment(s):

Surgery

Location:

BioPark1-R211 800 W Baltimore Street, Baltimore, MD 21201

Phone (Primary):

410-706-8040

Fax:

410-706-8121

Education and Training

I received my PhD in Biochemistry and Molecular Biology and did my postdoctoral training at the University of Notre Dame, Notre Dame, Indiana. I worked at the Lerner Research Institute of the Cleveland Clinic Foundation and the Holland Laboratory of the American Red Cross before joining the faculty of the University of Maryland, School of Medicine. My research program has been continuously funded and supported by the National Institute of Health. I also get research support from the Department of Defense, Arthritis Foundation, and the American Heart Association. 

Research/Clinical Keywords

Cardiovascular diseases, Autoimmunity, inflammation, stem cells, macrophages, integrin, cell adhesion

Highlighted Publications

Zhang, L., Jhingan, A., and Castellino, F.J.  (1992) Role of individual g-carboxyglutamic acid residues of activated human protein C in defining its in vitro anticoagulant activityBlood, 80: 942-952.

Cao, C., Lawrence, D.A., Strickland, D., and Zhang, L. (2005) A specific role of integrin mac-1 in accelerated macrophage efflux to the lymphaticsBlood, 106: 3234-3241, 2005. Also see commentary “Mac-1 mediates migration to lymph nodes” by Joseph P. Mizgerd (Blood 106:2927-2928).

Cao, C., Lawrence, D.A., Li, Y., Von Arnim, C.A., Herz, J., Su, EJ, Makarova, A, Hyman, B.T., D.A., Strickland, D., and Zhang, L. (2006) Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration.  The EMBO Journal, 25:1860-1870.

Ehirchiou, D., Xiong, Y., Xu, G., Chen, W., Shi, Y., and Zhang, L. (2007) CD11b Facilitates the Development of Peripheral Tolerance by Suppressing Th17 DifferentiationJournal Experimental Medicine 204:1519-24. 

Malinin, N., Zhang, L., Choi, J., Ciocea, A., Razorenova, O., Ma, Y., Podrez, E.A., Tosi, M., Lennon, D.P., Caplan, A.I., Shurin, S.B., Plow, E.F., and Byzova, T.V.   (2009)  A point mutation in kindlin-3 ablates activation of three integrin subfamilies in humansNature Medicine 15:313-8.  PMCID: PMC2857384

Cao, C., Gao, Y., Li, Y., Antalis, T., Castellino, F.J., and Zhang, L.  (2010)  The Efficacy of Activated Protein C in Murine Endotoxemia Is Dependent on Integrin CD11bJournal of Clinical Investigation 120:1971-1980, Highlighted on Faculty of 1000 Biology, July 2010.  PMCID: PMC2877939

Yakovlev, S., Belkin, A.M., Chen, L., Cao, C., Zhang, L., Strickland, D.K., Medved, L. (2016) Anti-VLDL receptor monoclonal antibodies inhibit fibrin-VLDL receptor interaction and reduce fibrin-dependent leukocyte transmigration. Thromb Haemost. Nov 30;116(6):1122-1130. Epub 2016 Sep 1.  PMCID: PMC5294920

Skerry, C., Scanlon, K., Ardanuy, J., Roberts, D., Zhang, L., Rosen, H., Carbonetti, N.H. (2017) Therapeutic treatment with sphingosine-1-phosphate receptor 1 ligands reduces pertussis inflammatory pathology by a pertussis toxin-insensitive mechanism. J Infect Dis. 215:278-286.  PMCID: PMC5853922

Stevanin, M., Busso, N., Chobaz, V., Pigni, M., Ghassem-Zadeh, S., Zhang, L., Acha-Orbea, H., Ehirchiou, D. (2017) CD11b regulates via IL-6 the Treg/Th17 balance in murine arthritis. Eur. J. Immunol, 47:637-645.  PMID: 28191643

Su, E.J., Cao, C., Fredriksson, L., Nilsson, I., Stefanitsch, C., Stevenson, T.K., Zhao, J., Ragsdale, M., Sun, Y., Yepes, M., Kuan, C.Y., Eriksson, U., Strickland, D.K., Lawrence, D.A., and Zhang, L. (2017) Microglial mediated PDGF-CC activation increases cerebrovascular permeability during ischemic stroke. Acta Neuropathol 134:585–604.  PMCID: PMC5587628

Zhang, L. (2018)  Contribution of resident and recruited macrophages in vascular physiology and pathology. Current Opinion in Hematology, 25:196-203.  PMID: 29438258

Additional Publication Citations

Zhang, L. and Castellino, F.J. (1989) Generation of an antibody with a designed specificity difference for protein C and activated protein CJournal of Protein Chemistry, 8:471-480.

Zhang, L. and Castellino, F.J.  (1990) A g-carboxyglutamic acid (g variant g6D,g7D) of human activated protein C displays greatly reduced activity as an anticoagulantBiochemistry, 29:10828-10834.

Zhang, L. and Castellino, F.J.  (1991) The role of the hexapeptide disulfide loop present in g-carboxyglutamic acid domain of human activated protein C in its in vitro anticoagulant propertiesBiochemistry, 30: 6696-6704.

Zhang, L., Jhingan, A., and Castellino, F.J.  (1992) Role of individual g-carboxyglutamic acid residues of activated human protein C in defining its in vitro anticoagulant activityBlood, 80: 942-952.

Zhang, L. and Castellino, F.J.  (1992) Influence of specific g-carboxyglutamic acid residues on the integrity of the calcium-dependent conformation of human protein CJournal of Biological Chemistry, 267: 26078-26084.

Zhang, L. and Castellino, F.J. (1993) The contributions of individual g-carboxyglutamic acid residues in the calcium-dependent binding of recombinant human protein C to acidic phospholipid vesicles.  Journal of Biological Chemistry, 268: 12040-12045.

Yu. S., Zhang, L., Jhingan, A., Christiansen, W.T. and Castellino, F.J. (1994) Construction, expression, and properties of a recombinant chimeric human protein C with replacement of its growth factor-like domains by those of human coagulation factor IXBiochemistry, 33: 823-831.

Zhang, L., and Castellino, F.J. (1994) The binding energy of human coagulation protein C to acidic phospholipid vesicles contains a major contribution from leucine 5 in the g-carboxyglutamic acid domainJournal of Biological Chemistry, 269: 3590-3595.

Jhingan, A., Zhang, L., Christiansen, W.T. and Castellino, F.J. (1994) The activities of recombinant g-carboxyglutamic acid-deficient mutants of activated human protein C toward human coagulation factor Va and factor VIII in purified systems and in plasmaBiochemistry, 33: 1869-1875.

Zhang, L., Muchowski, P.J., Chang, E.R., Soule, H.R., Plow, E.F. and Moyle, M. (1994) Functional interaction between the integrin antagonist NIF and the I domain of CD11b/CD18Journal of Biological Chemistry, 269: 26419-26423.

Zhang, L., and Plow, E.F. (1996) Overlapping, but not identical, sites are involved in the recognition of C3bi, neutrophil inhibitory factor, and adhesive ligands by the CD11b/CD18 integrinJournal of Biological Chemistry, 271: 18211-18216.

Zhang, L., and Plow, E.F. (1996) A discrete site modulates activation of I domains: application to integrin aMb2Journal of Biological Chemistry, 271: 29953-29957.

Zhang, L., and Plow, E.F. (1997) Identification and reconstruction of the binding site within aMb2 for a specific and high affinity ligand, NIFJournal of Biological Chemistry.  272: 17558-17564.

Plow, E.F. and Zhang, L. (1997) A MAC-1 attack: integrin functions directly challenged in knock-out miceJournal of Clinical Investigation 99:1145-1146.

Zaffran, Y., Zhang, L., and Ellner J.J. (1998) Role of CR4 in mycobacterium tuberculosis human macrophages binding and signal transduction in the absence of serumInfection and Immunity, 66(9): 4541-4.

Forsyth, C.B., Plow, E.F., and Zhang, L. (1998) Interaction of the fungal pathogen Candida Albicans with integrin CD11b/CD18: Recognition by the I domain is modulated by the lectin-like domain and the CD18 subunit.Journal of Immunology, 161: 6198-6205.

Ugarova, T.P., Solovjov, D.A., Zhang, L., Loukinov, D.I., Yee, V.C., Medved, L.V., and Plow, E.F.  (1998)Identification of a novel recognition sequence for integrin aMb2 within the g-chain of fibrinogen.  Journal of Biological Chemistry, 273: 22519-22527.

Cierniewski, C.S., Byzowa, T.,  Papierak, M., Haas, T.A., Niewiarowska, J., Zhang, L., Cieslak, M., and Plow, E.F. (1999) Peptides that mimic natural contact points of fibrinogen for aIIbb3 bind simultaneously to distinct subsites on the receptor and induce differential conformational and microenvironmental changes. Journal of Biological Chemistry, 274: 16923-16932,

Zhang, L. (1999) The aMb2 integrin and its role in neutrophil functionCell Research 9:171-178.

Zhang, L., and Plow, E.F. (1999) Amino acid sequences within the alpha subunit of integrin aMb2 (Mac-1) critical for specific recognition of C3biBiochemistry, 38: 8064-8071.

Simon, D.I., Chen, Z., Xu, H., Li, C.Q., Dong, J., McIntire, L.V., Ballantyne, C.M., Zhang, L., Furman, M.I., Berndt, M.C., and Lopez, J.A. (2000) Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18)Journal of Experimental Medicine 192:193-204.

Simon, D.I., Wei, Y., Zhang, L., Rao, N.K., Xu, H., Chen, Z., Liu, Q., Rosenberg, S., and Chapman, H.A. (2000)Identification of a urokinase receptor-integrin interaction site: promiscuous regulator of integrin functionJournal of Biological Chemistry, 275: 10228-10234.

Plow, E.F., Haas, T.A., Zhang, L., Loftus, J. and Smith, J.W.  (2000) Ligand binding to integrinsJournal of Biological Chemistry  275:21785-21788.

Yakubenko, V.P., Solovjov, D.A., Zhang, L., Yee, V.C., Plow, E.F., and Ugarova, T.P. (2001) Identification of the binding site for fibrinogen recogntion peptide g383-395 within the aMI-domain of integrin aMb2.  Journal of Biological Chemistry, 276: 13995-14003.

Xiong, Y. M., and Zhang, L. (2001) Structure-function of the putative I-domain within the integrin b2 subunitJournal of Biological Chemistry, 276: 19340-19349.

Xiong, Y. M., Haas, T.A., and Zhang, L. (2002) Identification of Functional Segments within the b2I-domain of Integrin alphaM beta2. Journal of Biological Chemistry 277: 46639-46644.

Cierniewska-Cieslak, A., Cierniewski, C.S., Blecka, K., Papierak, M., Michalec, L., Zhang,L., Haas, T.A., and Plow, E.F. (2002) Identification and characterization of two cation binding sites in the integrin beta 3 subunitJournal of Biological Chemistry, 277: 11126-11134.

Castellino, F.J., Ploplis, V.A. and Zhang, L. (2002) g-glutamate and b-Hydroxyaspartate in Proteins.  Posttranslational Modifications of Proteins: Tools for Functional Proteomics. Edited by C. Kannicht, Chapter 17, page 259-268.

Li, Y. and Zhang, L. (2003) The fourth blade within the beta-propeller is involved specifically in C3bi recognition by integrin alphaM beta2Journal of Biological Chemistry 278:34395-34402.

Xiong, Y. M., Chen, J., and Zhang, L. (2003) Modulation of CD11b/CD18 adhesive activity by its extracellular membrane-proximal regionsJournal of Immunology 171:1042-1050.

Li, Y., D.A. Lawrence, D.A., and Zhang, L. (2003) Sequences within Domain II of the Urokinase Receptor Critical for Differential Ligand RecognitionJournal of Biological Chemistry 278: 29925-29932.

Ehirchiou, D., Xiong, Y.M., Li, Y., Brew, S., and Zhang. L. (2005) Dual function for a unique site within the b2I-domain of integrin alphaMbeta2. Journal of Biological Chemistry 280:8324-8331.

Cao, C., Lawrence, D.A., Strickland, D., and Zhang, L. (2005) A specific role of integrin mac-1 in accelerated macrophage efflux to the lymphaticsBlood, 106: 3234-3241, 2005. Also see commentary “Mac-1 mediates migration to lymph nodes” by Joseph P. Mizgerd (Blood 106:2927-2928).

Yakovlev, S., Zhang, L., Ugarova, T., and Medved, L. (2005) Interaction of Fibrin(ogen) with Leukocyte Receptor alpha(M)beta(2) (Mac-1): Further Characterization and Identification of a Novel Binding Region within the Central Domain of the Fibrinogen gamma-ModuleBiochemistry 44:617-26.

Miura, Y., Miura, M., Gronthos, S., Allen, M.R., Cao, C., Uveges, T.E., Bi, Y., Shi, S., and Zhang, L.  (2005) Integrin beta2 is a novel surface marker for bone marrow stromal stem cells and plays an important role in osteogenic differentiation in vivoProceedings of the National Academy of Sciences 102:14022-14027.  see Report on SOM news vol7 number 4, page 2.

Cao, C., Lawrence, D.A., Li, Y., Von Arnim, C.A., Herz, J., Su, EJ, Makarova, A, Hyman, B.T., D.A., Strickland, D., and Zhang, L. (2006) Endocytic receptor LRP together with tPA and PAI-1 coordinates Mac-1-dependent macrophage migration.  The EMBO Journal, 25:1860-1870.

Xiong, Y., Cao, C., Makarova, A., Hyman, B., and Zhang, L. (2006) Mac-1 promotes FcgRIIA-dependent cell spreading and migration on immune complexesBiochemistry 45:8721-31.

Miura, Y., Gao, Z., Miura, M., Seo, B.M., Sonoyama, W., Chen, W., Gronthos, S., Zhang, L., and Shi, S. (2006)Mesenchymal Stem Cell-Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor ResourceStem Cells 24:2428-2436.

Tang, P., Cao, C., Xu, M., and Zhang, L. (2007) Regulation of integrin activation by cytoskeletal protein Radixin. FEBS Letters 581:1103-1108.

Ehirchiou, D., Xiong, Y., Xu, G., Chen, W., Shi, Y., and Zhang, L. (2007) CD11b Facilitates the Development of Peripheral Tolerance by Suppressing Th17 DifferentiationJournal Experimental Medicine 204:1519-24. 
see Commentary by Bashyam "CD11b tunes toleranceJ Exp Med 204:1504.
see Commentary by Budde "The Behavior of Th17 Cells Is IntolerableCELL 130:7, 2007
see News and Commentary by Veldhoen "Oral Tolerance: Passing CD11b on the Way to Tolerance"Immunology and Cell Biology85:397-398. 

Bi, Y., Ehirchiou, D., Kilts, T.M., Inkson, C.A., Embree, M.C., Sonoyama, W., Li, L., Leet, A.I., Seo, B., Zhang, L., Shi, S., and Young, M.F. (2007) Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their nicheNature Medicine. 13:1219-1227.

Choi, E.Y., Orlova, V.V., Fagerholm, S.C., Nurmi, S.M., Zhang, L., Ballantyne, C.M., Gahmberg, C.G., Chavakis, T. (2008)  Regulation of LFA-1-dependent inflammatory cell recruitment by Cbl-b and 14-3-3 proteinsBlood111:3607-14.   PMCID: PMC2275024

Li, Y., Cao, C., Jia, W., Yu, L., Mo, M., Wang, Q., Huang, Y., Lim, J., Ishihara, M., Wells, L., Azadi, P., Robinson, H., He, Y., Zhang, L. and Mariuzza, R.A. (2009)  Structure of the F-spondin domain of mindin, an integrin ligand and pattern recognition moleculeEMBO J. 28:286-97.  PMCID: PMC2637340

Malinin, N., Zhang, L., Choi, J., Ciocea, A., Razorenova, O., Ma, Y., Podrez, E.A., Tosi, M., Lennon, D.P., Caplan, A.I., Shurin, S.B., Plow, E.F., and Byzova, T.V.   (2009)  A point mutation in kindlin-3 ablates activation of three integrin subfamilies in humansNature Medicine 15:313-8.  PMCID: PMC2857384

Danese, S., Vetrano, S., Zhang, L., Poplis, V.A., Castellino, F.J.  (2010)  The protein C pathway in tissue inflammation and injury: pathogenic role and therapeutic implicationsBlood 115:1121-30.  PMCID: PMC2920225

Bi, Y., Gao, Y., Ehirchiou, D., Cao, C., Kikuiri, T., Le, A., Shi, S., and Zhang, L.  (2010)  Bisphosphonates Cause Osteonecrosis of the Jaw-like Disease in MiceAmerican Journal of Pathology, 177:280-90, 2010.  PMCID: PMC2893671

Cao, C., Gao, Y., Li, Y., Antalis, T., Castellino, F.J., and Zhang, L.  (2010)  The Efficacy of Activated Protein C in Murine Endotoxemia Is Dependent on Integrin CD11bJournal of Clinical Investigation 120:1971-1980, Highlighted on Faculty of 1000 Biology, July 2010.  PMCID: PMC2877939

Ranganathan, S., Cao, C., Catania, J., Migliorini, M., Zhang, L.#, and Strickland, D. K#. Molecular Basis for the Interaction of Low Density Lipoprotein Receptor-related Protein 1 (LRP1) with Integrin αMβ2: IDENTIFICATION OF BINDING SITES WITHIN αMβ2 FOR LRP1J Biol Chem 286:30535-30541, 2011. #, co-corresponding authors.  PMCID: PMC3162413

Wolf, D., Hohmann, J.D., Wiedemann, A., Bledzka, K., Blankenbach, H., Marchini, T., Gutte, K., Zeschky, K., Bassler, N., Hoppe, N., Rodriguez, A.O., Herr, N., Hilgendorf, I., Stachon, P., Willecke, F., Duerschmied, D., von Zur Muhlen, C., Soloviev, D.A., Zhang, L., Bode, C., Plow, E.F., Libby, P., Peter, K., Zirlik, A. (2011)  Binding of CD40L to Mac-1's I-Domain Involves the EQLKKSKTL Motif and Mediates Leukocyte Recruitment and Atherosclerosis--But Does Not Affect Immunity and Thrombosis in MiceCirc Res. 109:1269-79.  PMCID: PMC3291815

Yakovlev, S., Gao, Y., Cao, C., Chen, L., Strickland, D. K., Zhang, L. #, and Medved, L#. Interaction of fibrin with VE-cadherin and anti-inflammatory effect of fibrin-derived fragmentsJ.Thromb.Haemost. 9:1847-1855, 2011. #, co-corresponding authors.   PMCID: PMC3166367

 Yakovlev, S., Mikhailenko, I., Cao, C., Zhang, L., Strickland, D.K., Medved, L. (2012)  Identification of VLDLR as a novel endothelial cell receptor for fibrin that modulates fibrin-dependent transendothelial migration of leukocytesBlood 119:637-44.  PMCID: PMC3257021

Gabre, J, Chabasse, C, Cao, C, Mukhopadhyay, S, Siefert, S, Bi, Y, Netzel-Arnett, S, Sarkar, R, and Zhang, L. (2014) Activated Protein C Accelerates Venous Thrombus Resolution through Heme Oxygenase-1 InductionJ.Thromb.Haemost.12:93-102.  PMCID: PMC3891561

Cao, C, Zhao, J, Doughty, EK, Migliorini, M, Strickland, DK, Kann, MG, Zhang, L. (2015)  Mac-1 regulates IL-13 activity in macrophages by directly interacting with IL-13Rα1J Biol Chem.  PMID: 26160172

Zheng C, Yang Q, Xu C, Shou P, Cao J, Jiang M, Chen Q, Cao G, Han Y, Li F, Cao W, Zhang L, Zhang L, Shi Y, Wang Y. CD11b regulates obesity-induced insulin resistance via limiting alternative activation and proliferation of adipose tissue macrophagesProc Natl Acad Sci U S A. 2015 112:E7239-48, 2015.  PMCID: PMC4702980

Research Interests

My laboratory studies specific leukocyte populations in health and disease, with a major focus on the function of integrin CD11b/CD18 (Mac-1, αMβ2, or CR3). We investigate the role of innate and adaptive immunity, blood coagulation, and stem cells in disease development, tissue repair and regeneration. Projects range from structure-function analysis, leukocyte trafficking, signal transduction, to mouse models of inflammatory diseases, including atherosclerosis/restenosis, stroke, rheumatoid arthritis, multiple sclerosis, and inflammatory bowel disease. We conduct protein modeling and site-directed mutagenesis to identify protein-protein interactions, generate knockout and knockin mice by CRISPR to study their functions, and design peptide inhibitors and sequence-specific antibodies to block their contribution to disease development. 

We have been studying the molecular mechanisms that allow leukocytes to migrate within a fibrin-rich inflammatory environment and found that efficient macrophage migration requires coordination of integrin Mac-1, endocytic receptor LRP1, the serine protease tPA and its inhibitor PAI-1 (Fig. 1).


Figure 1
Fig. 1. Macrophage migrate by attaching to tPA/fibrin via Mac-1 (step 1), followed by PAI-1 binding to tPA (step 2) and endocytosis of the complex by LRP1 (step 3). Cao, et al. EMBO J. 2006

Zhang figure 2We are also investigating the nature of the CD11b/CD18 ligands that confer macrophages with proinflammatory or anti-inflammatory activities, based on our discovery that genetic inactivation of CD11b leads to the generation of T helper 17 (Th17) cells, a major subset of pathological T cells in many inflammatory diseases (Fig. 2), and the failure to develop immune tolerance in mice (J. Exp Med, 2007).

Fig. 2 (right): CD11b suppresses Th17 differentation. Ehirchiou, et al. J Exp Med 2007 

In addition, we reported that CD11b enhances the anti-inflammatory function of macrophages via the activated Protein C (APC), protease-activated receptor-1 (PAR-1), and the sphingosine-1-phosphate (S1P) receptor (Fig. 3; J. Clin Inv 2010).


Zhang Figure 3
Fig. 3. CD11b enhances the anti-inflammatory function of macrophages by facilitating the activation of PAR-1 and the production of S1P, which suppresses inflammation via its receptor S1P1. Cao, et al. J Clin Inv., 2010

Our novel observations are validated independently by a number of laboratories and further supported by subsequent genome wide association studies (GWAS) in human patients where a loss-of-function variant of CD11b (R77H) is genetically linked to increased risks of systemic lupus erythematosus (SLE).

Macrophages are derived from different embryonic origins (Fig. 4) with distinct functions in health and diseases.

Zhang Figure 4
Fig. 4. Different origins of inflammatory and resident macrophages. Zhang, Curr Opin Hematol, 2018

We are currently investigating the roles of inflammatory vs. resident macrophages in the pathogenesis of various cardiovascular and inflammatory diseases, including atherosclerosis and multiple sclerosis. For example, we reported recently that CD11b on microglia (resident macrophages in the brain) is key to the opening of the blood brain barrier following ischemic stroke (Fig. 5).

Zhang Figure 5
Finally, we are studying how stem cells, especially mesenchymal stem cells (Fig. 6), respond to drug treatments, e.g. bisphosphonates and antiresorptive drugs, in tissue repair and regeneration (Fig. 7).

Fig. 5. CD11b deficiency reduces the opening of the blood brain barrier. Su, et al, Acta Neuropathol, 2017

The information generated from these studies can assist us in the design of therapeutic reagents that will selectively target the deleterious effects of leukocyte engagement, such as their contributions to pathogenesis of atherosclerosis, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, while keeping its host defense functions intact.

 

Zhang figures 6 and 7

Fig 6: Differentation of mesenchymal stem cells. Miura, et al. PNAS, 2005
Fig 7: Tooth extraction leads to blood coagulation and fibrin deposition, followed by bone regeneration and remodeling. Bi, et al. AJP, 2010

Our major research projects include:

  • Structure-function relationship of the CD18 integrins using the CRISPR technology to identify specific ligands that either promote or suppress inflammation in vitro and their role in health and disease in vivo.
  • Resident vs. Inflammatory macrophages in inflammation and its resolution.
  • Aortic resident macrophages and their role in atherosclerosis.
  • Microglia in the progression and remission of progressive multiple sclerosis.
  • Mesenchymal stem cells of different embryonic origins in bone repair and regeneration.

Awards and Affiliations

Professional Affiliations 

  • Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine
  • Graduate Program in Life Science, University of Maryland Baltimore
  • Program in Oncology, University of Maryland School of Medicine
  • Molecular Microbiology and Immunology, University of Maryland School of Medicine
  • Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine

 Professional Activities:

  • Editorial Board member, Current Drug Targets, Bentham Science Publishers
  • Ad-hoc, Special Emphasis Panel ZRG1 VH-C (02) M Vascular and Hematology Study Section, NIH
  • Member, K99 Application ZGM1 TWD-A KR Study Section, NIH
  • Member, Fellowship Vascular Wall Biology Basic 2 Study Group, American Heart Association
  • Co-Chair, Special Emphasis Panel on Emerging Technologies in Neuroscience ZRG1 ETTN-D (02), NIH
  • Ad-hoc, Cellular and Molecular Biology of Glia (CMBG) Section Study Section, NIH
  • Ad-hoc, ZRG1 MDCN-Q 04 M, Molecular, Cellular, and Biophysical Neuroscience, NIH

Committee Service:

  • Member, School of Medicine Council, University of Maryland Baltimore
  • Member, Committee for Selecting UMSOM candidates for application of the HHMI GILLIAM FELLOWSHIPS for ADVANCED STUDY
  • Director, REAP (Research and Engineering Apprenticeship Program)

Grants and Contracts

NIH/NINDS R01NS082607 (2013 - 2019): “Mac-1 coordinates PDGF-CC activation by microglia and promotes BBB opening”

 

AHA 18TPA34170550 (2018 - 2021): “A novel radiation-resistant CD11b-expressing leukocyte population with atheroprotective activities”

 

NIH/NHLBI R01HL142909 (2019 - 2023): “Targeting the Proinflammatory Activity of Integrin Mac-1 for Treatment of Atherosclerosis” 

 

NIH/NINDS R01NS110630 (2019 - 2024): "Ligand-dependent and cell type-specific functions of integrin CD11b/CD18 in multiple sclerosis"

 

                                 

Lab Techniques and Equipment

  1. Various knockout, knockin and transgenic mice.
  2. Mouse models conducted in the laboratory:
    • Atherosclerosis and restenosis
    • Multiple Sclerosis
    • Ischemic stroke
    • Bone repair and regeneration
    • Collagen-induced Arthritis
    • Immune tolerance
  3. Adoptive cell transfer and bone marrow transplantation.
  4. Laser scanning confocal fluorescence microscopy and FRET.
  5. Live cell imaging.
  6. Flow cytometry and FACS cell sorting
  7. RNAi, CRISPR, RNAseq, and single cell RNAseq.
  8. Protein expression in E.coli, Sf9 insect cells, HEK293 and RAW264 cells.

Laboratory Personnel

  • Chunzhang Cao, PhD (Assistant Professor)
  • Vishnuprabu Durairaj Pandian, PhD (Postdoctoral Fellow) 

Postdoctoral Fellow Positions Available

NIH-funded postdoctoral fellow positions are available to investigate the role of specific subsets of macrophages in the pathogenesis of cardiovascular diseases, such as atherosclerosis, as well as autoimmune diseases, such as multiple sclerosis. The major goal of these studies is to molecularly define how integrin receptors on inflammatory and resident macrophages differentially regulate intracellular signaling events and
thereby confer macrophages with either pro- or anti-inflammatory activities in the setting of health and diseases. The post-doc fellow will need to perform experiments involving vascular/macrophage biology, immune regulation, and murine models of human diseases. Prior experience in at least some of these methodologies, such as molecular biology, immunology, and transcriptomics/bioinformatics is preferred.

Please send letter of interest, your contact information, CV, and list of three references to Dr. Li Zhang at lizhang@som.umaryland.edu