Skip to main content

Stephen Colin Rogers, PhD, MSc

Academic Title:

Assistant Professor

Primary Appointment:


Administrative Title:

Center Core Director - Pediatrics


670 W. Baltimore St.

Phone (Primary):

(410) 706 7094

Phone (Secondary):

(314) 541 9569


(410) 706 4148

Education and Training

  • University of Exeter, England, BSc., Exercise & Health Science, 1996-1999
  • Liverpool John Moores University, England, MSc., Exercise Physiology, 2001-2003
  • University of Cardiff, Wales, PhD., Nitric oxide metabolism in the human circulation, 2003-2007
  • Washington University in St. Louis, Postdoctoral study, Red blood cell biochemistry and physiology, 2007-2011


Stephen Rogers (PhD.) is Assistant Professor in the Department of Pediatrics at the University of Maryland School of Medicine and works at the Center for Blood Oxygen Transport and Hemostasis. He is an exercise physiologist by training, with specific interest in red blood cell (RBC) physiology and pathophysiology.

His research focus is on signaling and interplay between RBCs and the vasculature; more specifically, the role of RBCs regulating regional blood flow (i.e., matching oxygen delivery to metabolic demand) and maintaining cardiovascular homeostasis (i.e., dealing with vascular reactive oxygen species [ROS] via metabolic maintenance of antioxidant capacity). His work ultimately considers how RBCs adapt to or sustain injury under various conditions (i.e., blood storage, diabetes, sickle cell disease, sepsis, anemia), how this influences RBC physiologic performance, and plays into the amplification of disease (or related morbidity) progression.

Research/Clinical Keywords

Red blood cells, nitric oxide, s-nitrosothiols, SNO, SNO proteins, hemoglobin, diabetes, sepsis, sickle cell, blood storage, anemia

Highlighted Publications

  • Rogers S.C., Khalatbari A., Gapper P.W., Frenneaux M.P. & James P.E. Detection of human red blood cell-bound nitric oxide.  Biol. Chem. (2005) Jul 22; 280 (29): 26720-8. 
  • Rogers S.C., Khalatbari A., Datta B.N., Ellery S., Paul V., Frenneaux M.P. & James P.E. NO metabolite flux across the human coronary circulation.  Res. (2007). Jul 15; 75(2): 434-41. 
  • Rogers S.C., Said A., Corcuera D., McLaughlin D., Kell P. & Doctor A. Hypoxia limits antioxidant capacity in red blood cells by altering glycolytic pathway dominance.  FASEB J. (2009). Sept; 23 (9): 3159-70.
  • Rogers S.C., Ross J.G., d’Avignon A., Gibbons L.B., Gazit V., Hassan M.N., McLaughlin D., Griffin S., Neumayr T., DeBaun M., DeBaun M.R., and Doctor A. Sickle hemoglobin disturbs normal coupling among erythrocyte O2content, glycolysis, and antioxidant capacity.  (2013) Feb 28; 121(9): 1651-62.
  • Rogers S.C., Dosier L.B., McMahon T.J., Zhu H., Timm D., Zhang H., Herbert J., Atallah J., Palmer G.M., Cook A., Ernst M., Prakash J., Terng M., Towfighi P., Doctor R., Said A., Joens M.S., Fitzpatrick J.A.J., Hanna G., Lin X., Reisz J.A., Nemkov T., D’Alessandro A., Doctor A.Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes.  PLoS One (2018). Dec 21; 13(12):e0209201

Additional Publication Citations


  • Jackson S.K., Thomas M.P., Smith S., Madhani M., Rogers S.C., James P.E. In vivo EPR spectroscopy: biomedical and potential diagnostic applications.  Faraday Discuss. (2004) 126: 103-17.
  • Pinder A.G., Rogers S.C., Khalatbari A., Ingram T.E., James P.E. The measurement of nitric oxide and its metabolites in biological samples by ozone-based chemiluminescence. Meth Mol Biol. (2008) 476:11-28.
  • Pinder A.G., Rogers S.C., Morris K., James P.E. Haemoglobin oxygen saturation controls the red blood cell mediated hypoxic vasorelaxation.  Adv Exp Med Biol. (2009) 645: 13-20.
  • Ingram T.E., Pinder A.G., Milsom A.B., Rogers S.C., Thomas D.E., James P.E. Blood vessel specific vaso-activity to nitrite under normoxic and hypoxic conditions.  Adv Exp Med Biol. (2009) 645: 21-25.
  • Rogers S.C., Milsom A.B. The biological chemistry of nitric oxide in the vascular system.  In Perspectives on NO in Physiology and Pathophysiology. Richardson V.A. & Wallace A.V. (Eds.).  Research Signpost. T.C. 37/661(2), Fort Post Office, Trivandrum 695023, Kerala, India, (2009) 25-50.
  • Rogers S.C., Doctor A. Vasoregulation by Red Blood Cells. In Current Concepts in Pediatric Critical Care 2011. Spinella P.C. & Nakagawa T.A (Eds.). Society of Critical Care Medicine (2011) 21-40.
  • Bundhoo S., Anderson R.A., Sagan E., Hassan N., Pinder A.G., Rogers S.C., Morris K., James P.E. Direct formation of thienopyridine-derived nitrosothiols--just add nitrite! Eur. J. Pharmacol. (2011). Nov 30;670(2-3):534-540.
  • Rogers S.C., Gibbons L.B., Griffin S., Doctor A.Analysis of s-nitrosothiols via copper cysteine (2C) and copper cysteine-carbon monoxide (3C) methods.  (2013). Aug 1;62(2):123-129.
  • Rogers S., Silva M., Doctor A. Chapter 21: Hematologic Disorders. In: Oxidative Stress in Applied Basic Research and Clinical Practice: Studies on Pediatric Disorders. Editors: Hirokazu Tsukahara, Kazunari Kaneko, and Robin H. Steinhorn. Springer Verlag, GDR (2014) 349-369.
  • Said A.,Rogers S.C.,Doctor A. Red Cell Physiology and Signaling Relevant to the Critical Care Setting. In: Current Opinion in Pediatrics. (2015) June 27(3): 267-276.
  • Said A., Rogers S.C., Doctor A. Chapter 89: Erythron in Critical Illness. In Fuhrman & Zimmerman’s Pediatric Critical Care 5th Editors: Bradley P. Fuhrman, and Jerry J. Zimmerman. Elsevier (2016) 1234-1245.
  • Keller T.C., Butcher J.T., Broseghini-Filho G.B., Marziano C., DeLalio L.J., Rogers S., Ning B., Martin J.N., Chechova S., Cabot M., Shu X., Best A.K., Good M.E., Simao Padilha A., Purdy M., Yeager M., Peirce S.M., Hu S., Doctor A., Barrett E., Le T.H., Columbus L., Isakson B.E. Modulating vascular hemodynamics with an alpha globin mimetic peptide (HbµX).  (2016). Dec; 68 (6): 1494-1503.  
  • Kei T., Mistry N., Tsui A.K.Y., Liu E., Rogers S., Doctor A., Wilson D.F., Desjardins J.F., Connelly K., Mazer D.C., Hare G.M.T. Experimental assessment of oxygen homeostasis during acute hemodilution: the integrated role of hemoglobin concentration and blood pressureIntensive Care Med Exp. (2017). Dec; 5(1):12.
  • Nemkov T., Sun K., Reisz J.A., Song A., Yoshida T., Dunham A., Wither M.J., Francis R.O., Roach R.C., Dzieciatkowska M., Rogers S.C., Doctor A., Kriebardis A., Antonelou M., Papassideri I., Young C., Thomas T., Hansen K.C., Spitalnik S.L., Xia Y., Zimring J.C., Hod E.A., D’Alessandro A. Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage.  (2018). Feb; 103(2):361-372.
  • Said A.S., Rogers S.C., Doctor A.Physiologic Impact of Circulating RBC Microparticles upon Blood-Vascular Interactions. Front. Physiol. (2018). Jan 12; 8: 1120.
  • Rogers S.C., Moynihan F.T., McDonough R., Tim D.D., Hovmand-Warner E., Frazier E., Thomas K.A., Spinella P.C., Doctor A.Effect of plasma processing and storage on microparticle abundance, nitric oxide scavenging, and vasoactivity. Transfusion (2019). Apr; 59(S2): 1568-1577.
  • Tonelli A.R., Aulak K.S., Ahmed M.K., Hausladen A., Abuhalimeh B., Casa C.J., Rogers S.C., Timm D., Doctor A., Gaston B., Dweik R.A. A pilot study on the kinetics of metabolites and microvascular cutaneous effects of nitric oxide inhalation in healthy volunteers. PLoS ONE. (2019). Aug 30; 14(8):e0221777.