

III UNIVERSITY of MARYLAND School of Medicini CENTER FOR VACCINE DEVELOPMENT AND GLOBAL HEALTH

MALI

Change in risk factors for diarrhea mortality across a 10-year period between Global Enteric Multicenter Study (GEMS) and Vaccine Impact on Diarrhea in Africa (VIDA)

Background

- Diarrhea related mortality has decreased in recent decades as countries improve social, economical, and environmental conditions.¹
- However, diarrhea remains a leading cause of mortality among children under 5, causing nearly 500,000 deaths in 2015.^{1,2}
- Understanding the drivers of mortality in the past two decades will be useful in achieving 2030 Sustainable Global Development goal of reducing childhood diarrhea associated deaths to less that 1 per 1,000 live births.³
- Mathematical modeling suggests drivers for changes in diarrhea mortality include reduction in unsafe sanitation, childhood wasting and an increase in oral rehydration solution coverage.^{4,5}
- Primary collected data on diarrheal mortality and risk factors will complement mathematical models to understand the drivers of the decline in diarrhea mortality.

Objective & Hypotheses

- 1) Quantify the prevalence of diarrhea risk factors and interventions.
- 2) Assess the relative contribution of these factors on diarrhea mortality.

3) Assess the contribution of change in risk factor prevalence on diarrhea mortality over time.

Hypotheses: We expected to see a decline in risk factors for diarrhea mortality such as unsafe water and sanitation and malnutrition and an increase in interventions to prevent diarrhea mortality such as rotavirus vaccine and oral rehydration solution (ORS) coverage.

We expect changes in rotavirus and oral rehydration solution coverage as well as a reduction in malnutrition to be the biggest drivers in the decline of diarrhea mortality between GEMS and VIDA.

Methods

Participants/study sites:

• GEMS (2008-2011)⁶ and VIDA (2015-2018)⁷ enrolled children under 5 years old from three study sites: The Gambia, Kenya, and Mali.

Study Design:

- Each country site provided a censused population per study through a demographic surveillance system (DSS) updated two to four times per year.
- **CASES**: Children aged 0-59 months with moderate-to-severe diarrhea were enrolled from sentinel health centers.
- **CONTROLS**: Up to 3 controls per case, matched by age, sex, and neighborhood, were randomly selected from the DSS and enrolled within 14 days of the case enrollment. Controls were excluded if they had diarrhea in the previous 7 days.
- Cases and controls were followed up ~60 days for health status.
- The proportion of children with moderate-to-severe diarrhea who sought care at a sentinel health centers (*r*-value; derived from DSS interviews) was used to derive prevalence estimates for the population.

 \underline{m} Z

Emily Deichsel¹, Helen Powell¹, Adama Mamby Keita², M Jahangir Hossain³, Richard Omore⁴, Doh Sanogo², Samba O. Sow², Joquina Chiquita M. Jones³, Dilruba Nasrin¹, Jennifer Verani⁵, Marc-Alain Widdowson⁵, Milagritos Tapia¹, Karen L. Kotloff¹

¹Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, United States of America; ²Centre pour le Développement des Vaccins du Mali (CVD-Mali), Bamako, Mali; ³Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia; ⁴Kenya Medical Research Institute/Center for Global Health Research (KEMRI-CGHR), Kisumu, Kenya; ⁵Division of Global Health Protection, Kenya Office of the US Centers for Disease Control and Prevention, Nairobi, Kenya

Methods

Figure 1: VIDA Sites: The Gambia, Kenya, Mali

Statistical Analysis:

- by age group, site and study. Risks and interventions were established through literature review and data available from GEMS and VIDA.
- value for each age group, site, and study.
- group, site, and study.
- growth, population ageing, and the underlying mortality rate.

Table 1: Enrollment of cases and controls in GEMS and VIDA across
 three country sites

thee country sites.							
	GEMS		VIDA				
Site	Cases	Controls	Cases	Controls			
Basse & Bansang*, The Gambia	1,029	1,569	1,678	2,138			
Nyanza Province, Kenya	1,476	1,883	1,554	2,095			
Bamako, Mali	2,033	2,064	1,608	1,980			
Total	4,538	5,526	4,840	6,213			
*GEMS site only included Basse							

Melinda Gates Foundation. E Deichsel is funded by Center for Vaccine Development and Global Health T32 Vaccinology fellowship T32AI007524.

Prevalence of risks and interventions: Coverage of ORS for treatment of enrollment diarrhea only taken from cases, all other risks and interventions were taken only from the controls at enrollment. Proportions of cases or controls exposed to each factor, the estimated DSS population, and the rvalue were used to calculate the population-level prevalence for each factor

Mortality: Average annual deaths among cases, the DSS population, and *r*-

Population attributable fraction (PAF): We used the causal risk ratio (RR) and theoretical minimal risk exposure level (TMREL) from literature as well as the above calculated prevalence of risk to calculate PAF per factor, age

Drivers of change in diarrhea mortality: We used a decomposition of the effects of change in risk exposure on the diarrhea mortality rate between GEMS and VIDA while accounting for independent effects of population

Results

Table 2. Percent change in diarrhea mortality between GEMS and VIDA attributable to change in risk factor exposure by site

Stunting

Underweight

Summary & Conclusions

- rotavirus vaccine coverage increased.
- occurred in the youngest age groups.
- between GEMS. and VIDA in the three sites.

LONDON SCHOOL of HYGIENE &TROPICAL MEDICINE

1. GBD Diarrhoeal Diseases Collaborators. 2017 **2.** Liu *et al.*, 2015. **3.** UN Department of Economic and Social Affairs. 2015. 4. GBD Diarrhoeal Diseases Collaborators. 2019. 5. Black et al. 2019. 6. Kotloff et al 2012. **7.** Kotloff *et al.* Unpublished.

SCAN ME

Results

Figure 3. Rate of diarrhea mortality by age, site, and study

Figure 4. Proportion of VIDA diarrhea mortality attributed to risk factors

	The Gambia	Kenya	Mali	TOTAL	
nting	-0.59	-1.31	-1.04	-1.06	Quintile
eight	-1.14	-1.41	-1.41	-1.34	5th
sting	-17.30	-5.45	-13.00	-10.27	4th
rhea	-19.40	6.74	-7.86	-3.39	3rd
erage	-5.68	-4.44	-4.02	-4.65	2nd
eding	-40.12	-36.64	-24.01	-34.25	
ation	-6.07	-4.09	-9.48	-5.90	
vater	-0.31	-2.56	-0.88	-1.58	

Population prevalence of wasting and unsafe water decreased and

The largest decrease of diarrhea related mortality between GEMS and VIDA

Unsafe sanitation appears responsible for ~65% and lack of ORS to treat diarrhea appears responsible for ~38% of all diarrhea deaths during VIDA.

Decreasing prevalence of wasting and suboptimal breastfeeding appears to be the greatest contributors to the decrease in diarrhea mortality

References