

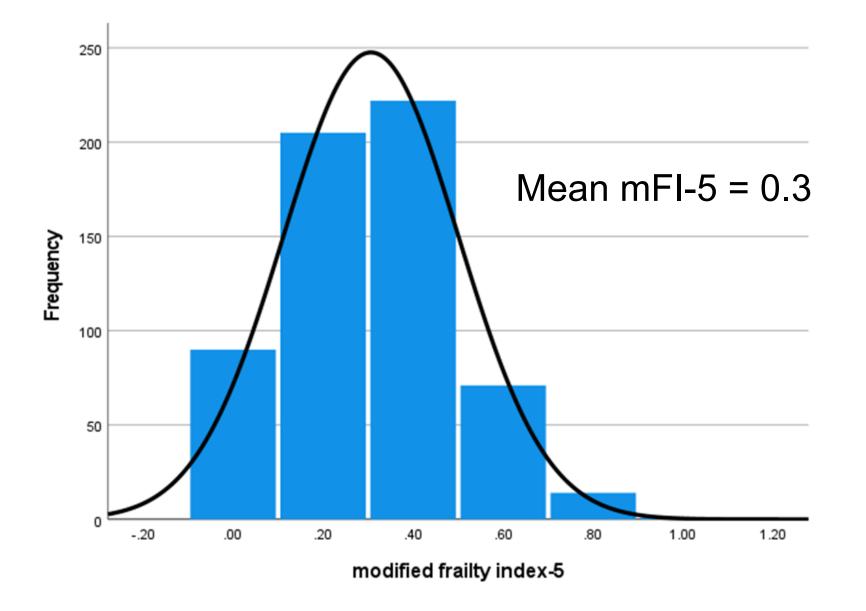
Introduction

- Frailty is a multifactorial syndrome that leads to loss of physiologic reserve which may contribute to poor outcomes in critically ill patients
- We hypothesized that the severity of premorbid frailty would contribute to poor outcome in patients admitted to the Neuro ICU with Large Hemispheric Infarct (LHI) Syndrome

Methods

- LHI was defined as an anterior circulation stroke with a NIHSS score ≥ 15
- Severity of Frailty was defined by the modified Frailty Index - 5 (mFI-5).
- The 5 factors in the mFI-5 include a history of HTN, COPD, DM, CHF and non-independent functional status.
- Spearman's correlation and student's T-test were used to identify continuous or categorical variables associated with mFI-5
- The mFI-5 was dichotomized at the mean to represent low and high frailty index
- Multivariate logistic regression analyses were performed to determine if high frailty index was independently associated with poor outcome at 3 months (defined as mRS \geq 4) as well as poor outcome among survivors (defined as mRS 4-5).

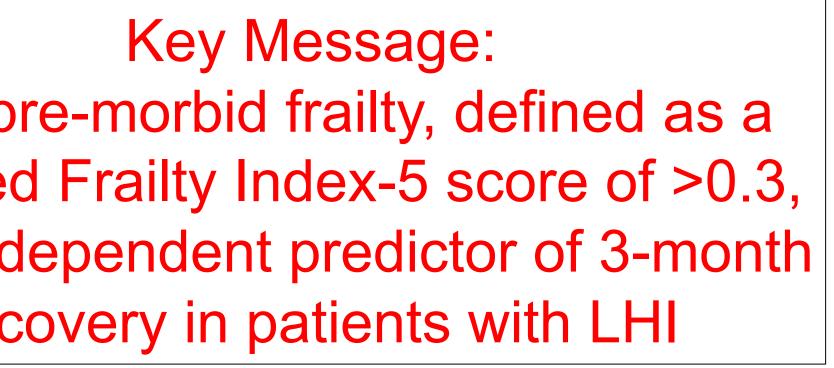
Utilizing the Modified Frailty Index-5 to Predict Outcomes in Patients with Large Hemisphere Infarction Syndrome


Brandon Overholt^{1,2}, Yasmin Alamdeen², Melissa Motta^{1,2}, Wendy Chang^{1,2}, Jamie Podell^{1,2}, Nicholas Morris^{1,2}, Gunjan Parikh^{1,2}, Karen Yarborough², Michael Phipps², Gaurav Jindal³, Neeraj Badjatia^{1,2}, Melissa Pergakis^{1,2} Program in Trauma¹, Department of Neurology², Department of Diagnostic Radiology and Nuclear Medicine³

Results

Table 1. Admission Characteristics

Characteristic	mean (SD) or n (%)	High p
Age, <i>years</i>	66 (15)	modified
Female	290 (48%)	mouned
Past Medical History		is an ind
Congestive Heart Failure	103 (17%)	
Hypertension	480 (79%)	rec
COPD	61 (10%)	
Diabetes Mellitus	223 (37%)	
Premorbid Non-	67 (10%)	
independent Functional		
Status		Table 2. Pr
NIHSS score	21 (4)	Dradiator
ASPECT score	8 (3)	Predictor High mFI-5
tPA administration	253 (42%)	Age, years
Mechanical Thrombectomy	369 (61%)	NIHSS sco
Reperfusion ¹	310 (84%)	ASPECT se
Glucose (mg/dL)	145 (63)	Clinical or l
1Thrombolysis in Cerebral I	nfarction	Herniation
scale score >2		Hospital Ac

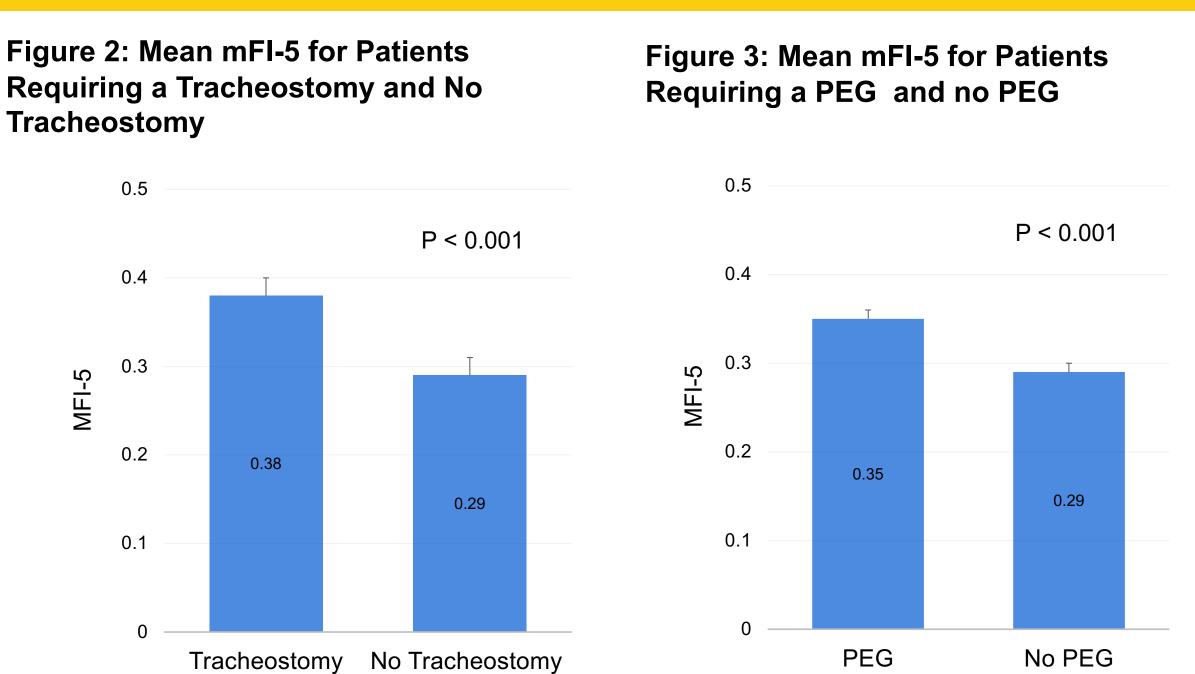

Predictors of Poor Recovery¹ at 3 months

ore SCO R Hospital Acq

Table 3. Predictors of Poor Recovery in Survivors¹ at 3 months

Predictor

High mFI-5² Age, years NIHSS score ASPECT sc Clinical or R Herniation


	OR	95% CI	P value
	1.81	1.17–2.80	0.008
	1.06	1.04 – 1.07	< 0.001
e	1.13	1.07 – 1.20	< 0.001
ore	0.82	0.74 – 0.92	< 0.001
adiographic			
	4.98	2.31 – 10.73	< 0.001
uired Infection	2.76	1.70 – 4.49	< 0.001
erv defined as m	nodified R	ankin Scale Scc	ore >4

¹Poor recovery defined as modified Rankin Scale Score >4. ²Defined as a mFI-5 score> 0.3

Predictor	OR	95% CI	P value
High mFI-5 ²	1.95	1.21 - 3.13	0.006
Age, <i>years</i>	1.04	1.02 - 1.06	< 0.001
NIHSS score	1.09	1.02 - 1.16	0.006
ASPECT score	0.76	0.68 - 0.85	< 0.001
Clinical or Radiographic			
Herniation	3.94	1.71 - 9.06	0.001
Hospital Acquired Infection	2.51	1.47 - 4.27	0.001

¹Poor recovery in survivors defined as modified Rankin Scale Score 4-5. ²Defined as a mFI-5 score >0.3

Tracheostomy

Table 4. Association Between mFI-5 and In-hospital Complications

In-hospital Complications	n (%)	Mean mFI-5 (SD)	P value
Tracheostomy			< 0.001
Yes	76 (12.6)	0.38 (0.19)	
No	526 (87.2)	0.29 (0.19)	
PEG ¹			
Yes	176 (29.2)	0.35 (0.19)	< 0.001
No	427 (70.8)	0.29 (0.19)	

Conclusion

- with LHI.
- PEG tube.

r Adams Cowley Shock Trauma Center

University of Maryland

Assessment of the mFI-5 on admission was found to be an independent predictor of poor outcome in patients

Higher mFI-5 informs the need for tracheostomy and

Future studies will assess the utility of the mFI-5 in broader stroke populations.