DEAN’S MESSAGE

It is no secret that our transplant center is one of the busiest in the nation, performing over 450 transplants annually. This is truly one of our destination marquee clinical programs, and one which draws patients from around the world to seek care from leading experts in the field. The strength of our program is derived from the exceptional surgeons and surgeon-scientists we have on the faculty. For example, Jonathan Bromberg, MD, PhD, Vice Chair for Research in the Department of Surgery, is a leading expert in the field of immune tolerance and preventing immune rejection of transplanted organs and tissues, which is a major barrier to long-term transplant success. Rolf Barth, MD, Director of the Division of Transplantation in the Department of Surgery, performed Maryland’s first laparoscopic kidney removal surgery on a living donor, and is a leader in liver transplant. Sunjay Kaushal, MD, PhD, Director of the Division of Pediatric Cardiac Surgery, is quickly becoming known as a leader in the field of pediatric cardiac stem cell therapy. Bartley Griffith, MD, is a senior surgeon, scientist and entrepreneur in the Department of Surgery who developed a wearable artificial lung, a “bridge” device to help patients waiting for an organ transplant. Finally, Stephen Bartlett, MD, Chair of the Department of Surgery, led the team that performed the most comprehensive full face transplant to date.

Founded in 1968, only 14 years after the first successful organ transplant — a kidney transplant performed at Brigham and Women’s Hospital — our transplant center has moved beyond solid organ transplantation into the most cutting-edge procedures in medicine today, namely, xenotransplantation, which uses a cell, tissue or organ donor from one species to transplant into a recipient from another species. Xenotransplantation may seem like the stuff of science fiction, but, in reality, is providing very real hope for the thousands of patients waiting to receive a life-saving transplant.

Now, the School of Medicine is positioning itself to become a national leader in xenotransplantation through its recent recruitment of Muhammad Mohiuddin, MD, one of the world’s experts in the field, who had been working at the National Heart, Lung and Blood Institute at the National Institutes of Health. I strongly encourage you to become familiar with the newest member of the School of Medicine transplant team.

I am pleased that Dr. Mohiuddin’s research will be further fueled by the support of the United Therapeutics Corporation, led by Martine Rothblatt, whose mission is to improve care and provide treatments for people with chronic, life-threatening conditions. Ultimately, we envision creating a new destination center of excellence for xenotransplantation, which draws upon the research conducted by our faculty to deliver the state-of-the-art care to our patients. Building upon the strong clinical practice foundation we already have, I am confident that we will perform, fairly soon, the first-in-man, successful trial of an animal donor organ into a human transplant recipient.

It was not by chance that we included transplantation as one of our key areas of research strength at the May 1, 2017 Research Strategy Forum. We have some incredible faculty working in this area — not only those who provide the best possible care to the patients who come to the University of Maryland for their care, but those who conduct simultaneous research to advance the science and discovery medicine that our patients receive. However, we should always challenge ourselves to do more, aim higher, and solidify our position as a top-tier transplant center.

Now in our Third Century, we have an incredible opportunity to become the global leaders in transplantation — from solid organs and tissues, to stem cells, to xenografts, I encourage us to capitalize upon our strengths while looking ever forward into the future.

In the relentless pursuit of excellence, I am

Sincerely yours,
E. Albert Reece, MD, PhD, MBA
Vice President for Medical Affairs, University of Maryland
John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine
You would think that America’s oldest academic department for treating “diseases of the eye” (established in 1873) might be tempted to rest on its laurels. But Bennie H. Jeng, MD, has a vision — and it’s firmly focused on the future.

Dr. Jeng, a distinguished National Institutes of Health (NIH)-funded physician-scientist, joined the School of Medicine’s Department of Ophthalmology & Visual Sciences as its chair in 2013. Since his arrival, the department has doubled the number of its clinical faculty members to more than 50, and 17 of its 27 practicing physicians are either NIH-funded investigator or mentored by NIH-funded researchers. Ophthalmology has also moved a large number of specialty subspecialties from academic positions to UMC facilities. In addition, the department has doubled the number of its clinical faculty members to more than 50, and 17 of its 27 practicing physicians are either NIH-funded investigator or mentored by NIH-funded researchers.

As a result of these efforts, the department has built its patient volume to more than 250,000 patient visits annually. Dr. Jeng was well aware that more than half of the practitioners in the state have some past affiliation with the University of Maryland, as School of Medicine or resident alumni. “Many of them have wanted to be more engaged with the university and department but have not had the opportunity,” he says. “This was the key to creating these win-win relationships. We’re able to provide the ophthalmological care that’s vitally needed by patients in those areas, while partnering with highly regarded physicians in the community.”

As a result of these efforts, the department has built its patient volume from 15,000 patient visits in 2013 to 31,000 in 2017 — a 140 percent increase. “And,” Dr. Jeng adds, “we still have room to grow.” While UMEA is looking carefully at other regions of the state for possible expansion, for the present, the goal is to fully utilize their current practice locations before adding more. “Even with our specialty sites, the fact that we continue to build good relationships in those communities may lead us to add other subspecialties and services,” notes Dr. Jeng. “It’s an approach that is working well for us.”
Defeating Diabetes Through Transplantation

Innovative Approaches in SOM Pancreatic Transplants Could Lead to Cure

Fifty years later, it remains a renowned center for cutting-edge innovation. Founded in 1968 within SOM’s Department of Surgery, the Division of Transplantation remains one of the largest and most comprehensive transplant programs in the country, performing over 400 transplants a year while conducting breakthrough research to solve the most complex problems in organ disease and replacement. With its enviable track record of accomplishments, the Division continues to set the bar for discovery in addressing the most daunting challenges in transplantation. “Given our historic strengths as a division, we are always drawn to tackling the most demanding problems, both in the OR and in the lab,” says Dr. Joseph Scalea, MD, Associate Professor of Surgery, Interim Chief of the Division of Transplantation Surgery and Director of Liver Transplantation.

“Our success in improving the number of whole organ pancreas transplants is due largely to a multidisciplinary effort involving surgeons, endocrinologists, and nephrologists.”

As a sizeable percentage of patients with diabetes eventually will suffer kidney failure as well, the combined kidney-pancreas transplant procedure represents the majority of the pancreas transplants performed. “We offer patients a more comprehensive approach that involves kidney disease and diabetes management along with a kidney and pancreas transplant,” says Dr. Scalea. “An added benefit is that the waiting time for donor organs needed for this combined transplant is quite low — in many cases, under six months.”

But another metaphorizing approach to curing diabetes lies inside the pancreas itself, in unique tiny clusters of cells called islets. Over a million islet cells in a single pancreas monitor blood glucose (sugar) levels and release insulin when necessary. If an individual’s pancreatic islets malfunction or fail, diabetes may develop.

Healthy islets themselves promote the normal metabolism of sugar. Without them, patients may well develop diabetes. Accordingly, medical researchers have spent the past several decades investigating methods to safely remove the islets from a donor pancreas and to implant them with a minimal surgery (and in some cases, immunosuppressive medications), a huge benefit for those patients too frail or sick to undergo a major procedure. If an islet cell transplantation is unsuccessful, the patient can always return to insulin therapy.

In the pancreas and islet cell transplantation program, Dr. Scalea and his Division colleagues are actively exploring three exciting approaches to make this new form of transplantation a reality.

• Autologous islet cell transplantation, a patient’s own islet cells are carefully extracted from their pancreas after it has been surgically removed. As opposed to a diagnosis of diabetes, this need for removal of the pancreas is frequently caused by chronic pancreatitis, an inflammatory condition of the pancreas that causes intense pain. The removed islets are then infused into the patient’s liver, where they can begin producing insulin again. “For patients whose pancreas is removed due to pancreatitis, we have observed considerable success with restitution of glucose metabolism, and avoidance of diabetes,” says Dr. Scalea.

• Allotopic (standard) islet cell transplantation involves removing, purifying, and infusing donor islets into a diabetic recipient in order to treat diabetes. In this case, the islets are also infused into the liver. Along with immunosuppressive issues, a major challenge to this approach is extracting enough islets from a donor pancreas (upwards to one million) so that the recipient is rendered diabetes free. Currently, many donated pancreases and their islets fail to meet transplantation standards, while transplantable islets are often damaged during processing. Despite these issues, the field has seen significant improvement in islet cell purification and transplantation in the last 10 years. Here at the University of Maryland, Dr. Scalea has teamed up with Aaron Rapoport, MD, Director of the Blood and Marrow Transplant Program, to optimize the process of islet cell purification.

The most novel approach, xenotransplantation, seeks to circumvent this islet cell shortage through the development of bio-designed islet cells that can be transplanted from genetically modified animal models into humans. Up to this point, all of the forms of xenotransplantation that have been explored have encountered major complications — specifically, rejection and infection. However, given the broad spectrum of research activity now taking place in the Transplantation Division, Dr. Scalea is hopeful that a short-term answer will be found.

“Many researchers have suggested that islet cell transplants will be the first successful xenotransplantation procedure done in humans with any regularity,” he says. “In our own division, we have a number of leading researchers who are making significant progress in this area, including Jonathan Brumberg, MD, PhD, and his innovative research involving immunosuppressive therapies, and Roll Barth, MD, and his work with immunologic tolerance. Both of these studies are looking at important pieces of the larger puzzle.” Dr. Scalea himself directs a translational immunology laboratory that is investigating transplantation tolerance. “We are looking for ways to eliminate the need for all pharmacological immunosuppression after transplantation, so that transplant recipients wouldn’t need to take any anti-rejection medications at all,” he says. “We’ve already enjoyed some early successes.”

Dr. Scalea anticipates that the current basic science studies now underway will lead to “a tangible set of translational experiments” in the next two years. In the meantime, he and his colleagues will continue to attack the problem of islet cell transplantation and acceptance in all three areas. “Despite all of the complexity surrounding these different approaches, we are really focusing on a single goal — curing diabetes,” he says.

UN SOM: Leading in Transplantation

SOM’s Division of Transplantation within the Department of Surgery is internationally recognized as:

• First in Maryland to perform a single-lung transplant, a combined heart and liver transplant, and a total artificial heart-to-heart transplant
• One of the nation’s leading centers for basic and translational xenotransplantation research
• Ours is the only transplant center in the country performing living donor liver transplants on adults

Healthy islets themselves promote the normal metabolism of sugar. Without them, patients may well develop diabetes. Accordingly, medical researchers have spent the past several decades investigating methods to safely remove the islets from a donor pancreas and to implant them with a minimal surgery (and in some cases, immunosuppressive medications), a huge benefit for those patients too frail or sick to undergo a major procedure. If an islet cell transplantation is unsuccessful, the patient can always return to insulin therapy.

In the pancreas and islet cell transplantation program, Dr. Scalea and his Division colleagues are actively exploring three exciting approaches to make this new form of transplantation a reality.

• Autologous islet cell transplantation, a patient’s own islet cells are carefully extracted from their pancreas after it has been surgically removed. As opposed to a diagnosis of diabetes, this need for removal of the pancreas is frequently caused by chronic pancreatitis, an inflammatory condition of the pancreas that causes intense pain. The removed islets are then infused into the patient’s liver, where they can begin producing insulin again. “For patients whose pancreas is removed due to pancreatitis, we have observed considerable success with restitution of glucose metabolism, and avoidance of diabetes,” says Dr. Scalea.

• Allotopic (standard) islet cell transplantation involves removing, purifying, and infusing donor islets into a diabetic recipient in order to treat diabetes. In this case, the islets are also infused into the liver. Along with immunosuppressive issues, a major challenge to this approach is extracting enough islets from a donor pancreas (upwards to one million) so that the recipient is rendered diabetes free. Currently, many donated pancreases and their islets fail to meet transplantation standards, while transplantable islets are often damaged during processing. Despite these issues, the field has seen significant improvement in islet cell purification and transplantation in the last 10 years. Here at the University of Maryland, Dr. Scalea has teamed up with Aaron Rapoport, MD, Director of the Blood and Marrow Transplant Program, to optimize the process of islet cell purification.

The most novel approach, xenotransplantation, seeks to circumvent this islet cell shortage through the development of bio-designed islet cells that can be transplanted from genetically modified animal models into humans. Up to this point, all of the forms of xenotransplantation that have been explored have encountered major complications — specifically, rejection and infection. However, given the broad spectrum of research activity now taking place in the Transplantation Division, Dr. Scalea is hopeful that a short-term answer will be found.

“Many researchers have suggested that islet cell transplants will be the first successful xenotransplantation procedure done in humans with any regularity,” he says. “In our own division, we have a number of leading researchers who are making significant progress in this area, including Jonathan Brumberg, MD, PhD, and his innovative research involving immunosuppressive therapies, and Roll Barth, MD, and his work with immunologic tolerance. Both of these studies are looking at important pieces of the larger puzzle.” Dr. Scalea himself directs a translational immunology laboratory that is investigating transplantation tolerance. “We are looking for ways to eliminate the need for all pharmacological immunosuppression after transplantation, so that transplant recipients wouldn’t need to take any anti-rejection medications at all,” he says. “We’ve already enjoyed some early successes.”

Dr. Scalea anticipates that the current basic science studies now underway will lead to “a tangible set of translational experiments” in the next two years. In the meantime, he and his colleagues will continue to attack the problem of islet cell transplantation and acceptance in all three areas. “Despite all of the complexity surrounding these different approaches, we are really focusing on a single goal — curing diabetes,” he says.
The night before their graduation ceremony, top achievers from the Class of 2017 gathered for the 11th annual Student Awards Ceremony and Dinner, held at the Marriott Inner Harbor. The awards dinner provided an opportunity to recognize the accomplished graduating students who received scholarships, awards, and other academic prizes. This event also recognized the donors whose generous contributions support these awards.

### Celebrating Academic Achievements

#### Class of 2017

The University of Maryland School of Medicine is fortunate to attract exceptional medical students, and those receiving honors and awards tonight are truly the best of the best,” said E. Albert Reece, MD, PhD, MBA, Vice President for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. “I would like to offer my heartfelt congratulations to our extraordinary students who seized the opportunity to be part of this great SOM, and who have worked not only diligently, but also in the pursuit of excellence towards their medical degrees. Your dedication to excellence and your commitment to stand out from your peers have brought us together to celebrate this evening with you.”

The awards ceremony honored students across a variety of medical disciplines who have demonstrated high academic achievement, humanism, and professionalism during their time at the School of Medicine. Awards were presented from nearly every School of Medicine department, with many of the awards named in honor of influential department founders, former chairs or faculty members, or in recognition of donors who made generous personal gifts to establish an award or prize. “Our donors have made countable contributions to the lives and future careers of our students,” said Dean Reece. “Your philanthropy has had a measurable and a tangible impact, and less contributions to the lives and future careers of our students,” said Dean Reece. “Your philanthropy has had a measurable and a tangible impact, and our donors have made countable contributions to the lives and future careers of our students.”

In addition to students receiving recognition at the ceremony, two faculty members were inducted as fellows into the Carolyn J. Pass, MD ‘66 and Richard M. Susel, MD ‘66 Academy of Educational Excellence, which honors faculty members who demonstrate excellence in both patient care and classroom instruction. This year’s honorees were Erin Gindlee, MD, Associate Professor, Department of Pediatrics, and Director of the Pediatric Residency program, and Joseph Martinez, MD, Associate Professor, Department of Emergency Medicine, as well as Assistant Dean for Student Affairs, Assistant Dean for Clinical Medical Education and Residency Programs Liaison. Faculty members inducted into the Academy are recognized on a plaque located inside the Pass and Susel Medical Education Facility in Howard Hall, and receive special pins to signify their membership into the Academy. Dr. Pass and Susel established an additional award in 2015, The Medical Education Tool Chest, which rewards faculty members who introduce novel curriculum changes and provides funding for projects designed to augment medical student education. This year’s recipient was Neda Frayha, MD, Clinical Assistant Professor, Department of Medicine, and Assistant Dean, Office of Student Affairs.

Also, for the fourth year running, the Pass and Susel Academy inducted a medical student. This year, Ekjyet Gill, MS-IV, was honored as the Student Teaching Fellow.

The Class of 2017 were the stars as they celebrated their graduation ceremony at the Hippodrome Theatre on May 18. Hundreds of family, friends and faculty were there to cheer on the 160 graduates as they officially transitioned from students to doctors. “This celebration is also about you and, indeed, for you,” said E. Albert Reece, MD, PhD, MBA, Vice President for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine, told the families. “For most of our graduating students, the dream of becoming a physician and/or a scientist would not have been realized without you. Your prayers, your encouragement, your support, your love and compassion have contributed to this momentous occasion for these students today.”

Michael Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Graduation at the Hippodrome was quite the show

The Class of 2017 were the stars as they celebrated their graduation ceremony at the Hippodrome Theatre on May 18. Hundreds of family, friends and faculty were there to cheer on the 160 graduates as they officially transitioned from students to doctors. “This celebration is also about you and, indeed, for you,” said E. Albert Reece, MD, PhD, MBA, Vice President for Medical Affairs, University of Maryland, and the John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine, told the families. “For most of our graduating students, the dream of becoming a physician and/or a scientist would not have been realized without you. Your prayers, your encouragement, your support, your love and compassion have contributed to this momentous occasion for these students today.”

Michael Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michael Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.

Michel Cuyr, President of the Cuyr Group and Chair of the School of Medicine Board of Visitors, added “To you, our deserving graduates and your exceedingly proud family and friends, I extend heartfelt congratulations on the Student Teaching Fellow.
professor Emeritus in the Department of Pharmacology at SOM, an internationally recognized scientist whose groundbreaking cancer research is considered among the greatest advances in treating breast cancer, passed away on June 7 from complications from Parkinson’s disease at her home in Fulton, MD. She was 82.

Dr. Brodie’s research revolutionized the treatment of hormone-dependent breast cancer worldwide. She pioneered the development of aromatase inhibitors, which have become frontline drugs in treating estrogen-driven breast cancer, the most common form of breast cancer in postmenopausal women. Her work developing aromatase inhibitors was a paradigm-shifting effort that began in the 1970s and was designed to reduce the level of the estrogen in the body and thereby block the growth of cancer cells. Aromatase is an enzyme that plays a key role in the biosynthesis of estrogen, which fuels the growth of cancer cells.

“Dr. Angela Brodie’s impact on the treatment of breast cancer has been unparalleled. It is because of her work that a disease that was once almost a certain death sentence can now, for many, be successfully treated and managed,” said E. Albert Reece, MD, PhD, MFA, Vice President for Medical Affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and Dean of the University of Maryland School of Medicine. “She never gave up on her vision of finding a new treatment with fewer side effects, and many women around the world have benefitted from her perseverance.”

Dr. Brodie’s research spanned decades and built upon her initial discoveries to create more powerful and specific aromatase inhibitors. “Dr. Brodie’s pioneering research is equal to the greatest advances in treating breast cancer in the last 150 years,” said Kevin J. Cullen, MD, the Marlene and Stewart Greenebaum Distinguished Professor of Oncology at the University of Maryland School of Medicine and director of the University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center.

“Despite the incredible impact of her science, Angela was the most generous and unassuming scientist I have ever known. She was extraordinarily humble about her achievements: The Drs. Angela and Harry Brodie Distinguished Professorship in Translational Cancer Research.