that's on my mind this month are two important issues before the U.S. Congress that directly affect the School of Medicine: passing the 21st Century Cures bill, and amending the Higher Education Act of 1965.

The American research enterprise, long the world's gold standard for scientific progress, is at risk of slipping behind. For many years, the NIH and other science agencies have operated under a continuing resolution, which has created tremendous uncertainty. The federal government has pulled back financial support for biomedical research, but by continuously hiking through a new, so-called innovation fund. Specific projects, such as research into personalized medicine, would receive support from a pot of $500 million per year.

Most importantly, the remaining money would support young scientists and higher-risk projects with the potential for incredible rewards. Pulling behind in research support translates into people turning away from careers in science, and an increasing inability to encourage new investigators to enter academic professions. Because we have siphoned off federal research funding, we have triggered a shortfall in academically-trained physicians, physician-scientists and scientists. In essence, we have thwarted efforts to increase young people's interest in STEM (science, technology, engineering and mathematics) careers by constraining salary support and stimulating a surplus of competition for grants and jobs in many of these fields.

The Foreign Medical School Accountability Fairness Act would protect all medical students, and save U.S. taxpayer dollars, by closing a loophole that gives special treatment to a small number of medical schools in the Caribbean. The loophole allows for-profit medical schools in the Caribbean to enroll large percentages of American students without meeting the same standards or the basic requirements of U.S. and foreign medical schools. In 2012, those schools took in more than $450 million in U.S. Department of Education Title IV funding.

The Act's simple fix would apply the following two requirements to all medical schools outside of the United States and Canada: at least 60 percent of the enrollment must be non-U.S. citizens or permanent residents, and students must have at least a 75 percent pass rate on the U.S. Medical Licensing Exam. These are the same requirements of students at the School of Medicine, which help to ensure students' progress and success in their education, up through residency matching. For example, the average attrition rate at U.S. medical schools is 3 percent, while rates at for-profit foreign medical schools can be up to 26 percent or higher. Even if students do graduate, they do so with much more debt and often have difficulty finding a residency position. In 2015, foreign-trained, American graduates had a residency match rate of 53 percent, compared to 94 percent of graduates of U.S. medical schools.

Medical science is entering a powerful new era of discovery. Our institutions need sufficient resources and a level playing field in order to seize these massive opportunities and continue advancing knowledge to improve human health. Unfortunately, medical schools are scrambling to recruit and retain gifted scientists and to provide them the state-of-the-art tools they need. This month's issue of SOMnews highlights some of the core services provided by the Center for Innovative Biomedical Resources (CIBR) here at the School of Medicine. CIBR itself was made possible through funds secured from the American Recovery and Reinvestment Act, a much-needed, one-time injection of federal dollars into the NIH budget. Although the School of Medicine took full advantage of the Stimulus funds, we need to have more consistent support to sustain our research ecosystem.

Preserving America's leadership in medical education and global biomedical research will require bold, decisive actions and strategic planning for the long term. Although we await decisions on the 21st Century Cures Act and the Foreign Medical School Accountability Fairness Act, we welcome the renewed attention and urge policymakers to move forward to implement these urgent changes. While we cannot recoup the financial losses of the past few years, these legislative changes will help us regain our footing, and allow us to truly invest in the next big breakthroughs. In the relentless pursuit of excellence, I am

Sincerely yours,

E. Albert Reece, MD, PhD, MBA
Vice President for Medical Affairs, University of Maryland
John Z. and Akiko K. Bowers Distinguished Professor and Dean, University of Maryland School of Medicine

Here's to you, Dr. Robinson

Gregory Robinson, DMin, MDiv, MA, longtime University of Maryland School of Medicine administrator, educator, advisor and clergymen, retired on July 1 after 41 years of service to the School of Medicine.

"We owe a deep debt of gratitude for everything Dr. Robinson has done for the School of Medicine over the past four decades," said E. Albert Reece, MD, PhD, MBA, Vice President for Medical Affairs, University of Maryland, and the John Z. and Akiko Bowers Distinguished Professor and Dean, University of Maryland School of Medicine. "Indeed, one only has to look around the SOM and UMB campus to see Dr. Robinson's mark on virtually every research building that we have constructed, including the newest one, HSF III. In addition, Dr. Robinson's mark is seen in his involvement on committees, advisory boards, in major policy discussions, and in his leadership and management. He has been an instrumental part of the School's tremendous growth and success, and we wish him all the best in his greater mission of ministry and service."

Dr. Robinson's career at the SOM has uniquely covered an unprecedented range of critical administrative responsibilities, including academic and research administration, fiscal management, space and facilities planning, construction and management, human resource management, and parking and public safety. At various points during his tenure, he managed some or all of these functional areas at the same time.

He also managed to find time to dedicate himself tirelessly to service. From the start of his career, serving the needs of the faculty, staff, students and SOM guests has been his priority. Whether in the SOM, on the UMB campus, in the community, or in the field of academic medicine, his career was marked by unparalleled service.
BIoSEnSoR CoRE FACIlITy
Room 611, Health sciences Facility II
410-706-3020 or 410-706-2036
http://biosensorcore.com
Core Services
Biacore® instruments utilize the optical method of “surface plasmon resonance” (sPR), small changes in the interaction of monochromatic light with a metallic surface that occur when a protein or other molecule binds to that surface. Using the T200 or 3000, the core and its staff can provide accurate determinations of “on” and “off” rates for binding reactions, as well as determine affinity constants for binding. As it uses sPR, many different kinds of binding reactions can be studied, often robotically, and a wide range of biological molecules can be examined, including proteins, nucleic acids, carbohydrates and lipids, as well as small molecules.

Typical studies can:
• Determine if pairs of molecules bind to each other.
• Determine kinetic constants, binding constants, and specificity of binding.
• Determine if several molecules can bind simultaneously to the same ligand or if they compete for binding.

In November, 2013, the University of Maryland School of Medicine (UMSOM) launched the Center for Innovative Biomedical Resources (CIBR), the organizational framework for the UMSOM biomedical core resources. CIBR serves as a center of excellence for state-of-the-art technologies, high-tech instrumentation, and expertise that supports biomedical research, clinical practice and health care. Here is a sampling of what CIBR has to offer. More CIBR resources will be spotlighted in later issues of SOMnews.

Selected CIBR Cores:

Structural Biology Cores

BIoSEnSoR CoRE FACIlITy
Room 611, Health sciences Facility II
410-706-3020 or 410-706-2036
http://biosensorcore.com

Core Services
Biacore® instruments utilize the optical method of “surface plasmon resonance” (sPR), small changes in the interaction of monochromatic light with a metallic surface that occur when a protein or other molecule binds to that surface. Using the T200 or 3000, the core and its staff can provide accurate determinations of “on” and “off” rates for binding reactions, as well as determine affinity constants for binding. As it uses sPR, many different kinds of binding reactions can be studied, often robotically, and a wide range of biological molecules can be examined, including proteins, nucleic acids, carbohydrates and lipids, as well as small molecules.

Typical studies can:
• Determine if pairs of molecules bind to each other.
• Determine kinetic constants, binding constants, and specificity of binding.
• Determine if several molecules can bind simultaneously to the same ligand or if they compete for binding.

NUCLEAR MAGNETIC RESONANCE CENTER
Basement, Health Sciences Facility II
410-706-7004
http://medschool.umaryland.edu/nmr/

Core Services
We offer assistance and training for:
• Collecting NMR data
• Processing NMR data
• Analysis of NMR data
• Linux and Apple workstation access for data processing and analysis
• Lab space for sample handling
• Assistance with NMR-related computer software including Bruker Topspin, NMRView, nmrPipe, nmrDraw, xplor-NIH, and several others

Core Instrumentation
• 600 MHz Bruker Avance III NMR Spectrometer with TCI cryoprobe
• 800 MHz Bruker Avance Spectrometer with TXI cryoprobe and BACS 60 automatic sample changer
• 950 MHz Bruker Avance Spectrometer with TCI cryoprobe

Imaging Technologies

CENTER FOR FLUORESCENCE SPECTROSCOPY
Room N-241, Institute of Human Virology
410-706-7520

To see the full list of the CIBR cores and services, please visit http://medschool.umaryland.edu/CIBR/.

Mission
To provide specialized expertise, cutting-edge technologies and sophisticated scientific resources supporting a robust basic, clinical and translational biomedical research environment.
Vision

- Provide the broadest array of core services to support a successful biomedical research environment
- Facilitate access to state-of-the-art technologies necessary to catalyze high-impact science and support new research grants
- Provide a centralized management structure to optimize quality control, efficiencies and cost effectiveness, marketing, customer support and financial management
- Operate core laboratories with directors and staff who are experts in these disciplines
- Foster a collaborative, interdisciplinary research environment

Cytometric & Bioassay Facilities

CYTOKINE CORE LABORATORY
Room 610, Breslaur Research Building
410-706-1508
www.cytokines.com

Core Instrumentation
- Zeiss 710 NLO
- Zeiss 7MP
- Zeiss 5Live
- Olympus LCV Incubated Microscope

Core Services
- The CCL offers an extensive list of human, mouse, and rat cytokine, chemokine and growth factor assays. We offer two assay platforms, ELISAs and Multiplex. The CCL is here for every investigator from beginning to end. We are happy to help with experimental design all the way through to data interpretation. Our turnaround time is approximately 10 business days and data is emailed to the investigator in a user-friendly Excel format.

Core Instrumentation
- LumineX™ 100 Multi-analyte System
- Molecular Dynamics Precision Microplate Reader
- BioTek ELx50 Plate Washer

Leadership

Nicholas Ambulos, PhD ~ Director
Thomas McHugh ~ Program Administrator
Carol McKissick, MBA ~ Program Administrator, Business Development

Cytometric & Bioassay Facilities

http://ihv.org/research/facility.html

Core Services
- ELISAs
- PBMCs
- Immunocytochemistry, Western blot & protocol establishment
- Luminex assays
- Mycoplasma & endotoxin testing
- Monoclonal antibody and recombinant protein screening, production, purification, & labeling
- HIV, SIV, & SHIV culture
- TCID50 and neutralization assays
- quantitative PCR

Core Instrumentations
- Spectramax M2 6-96 Well Plate Reader
- Wallac Victor 2 Multi-Analyte Plate Reader
- Veritas Microplate Luminometer
- Bio-Plex 200 System
- BioRad IQ 5 Real-time PCR machines

Bioinformatics & Statistics Resource Facilities

http://ihv.org/research/facility.html

Core Services
- Data capture
- Data management
- Custom database creation and data storage
- Access to data in the University of Maryland Medical Center Clinical Data Repository

[continued on back page]
and commitment. Over the years, he has served on more than 50 UMB committees, advisory boards and sub-committees, 34 SOM committees and sub-committees and 24 SOM/UMB search committees. “I have been fortunate to have had the opportunity to spend the past 41 years here at the SOM,” Rob- inson said. “I never would have dreamed my career would happen this way, but the School kept growing, and I kept taking on new roles and here we are. The continuous challenges have made it exciting to come to work every day!”

Mr. Robinson began his career at the SOM in 1973 as Administrative Assistant to Dean John M. Dennis, MD. Five years after starting his full time position, Dr. Robinson earned a Master’s Degree in Urban Planning & Policy Analysis in 1978 from Morgan State University’s School of Urban Affairs and Human Development. He then moved into managing facilities planning and construction, where he would play an integral role in the planning and construction of many important projects, including MSTF, the Allied Health Building, Howard Hall, 108 North Greene St., HSF I, HSF II and now HSF III.

Mr. Robinson later earned Master of Divinity and Doctor of Ministry degrees, both from the Howard University School of Divinity. Sixteen years ago he became an ordained minister in the United Church of Jesus Christ (Apostolic). He says that because of his academic credentials, he has been given opportunities to serve in ministry to the broader society and across church denominational lines. “Education is always the key that opens doors,” he said.

In addition to his contribution to the growth and maintenance of our physical facilities, as Associate Dean for Academic Administration and Resource Management, Dr. Robinson also provided leadership and management in the areas of faculty affairs and human resource management. Specifi- cally, he provided counsel, direction and advice to countless department chairs, administrators, faculty and staff on appointment and performance-related matters; he helped develop policies and operational programs to assist in improving faculty and staff performance; he provided support to the institu- tion’s top leadership by initiating and facilitat- ing pro-active measures pertaining to faculty and staff; and he provided leadership in the intervention and resolution of critical faculty and staff issues. His participation on the Dean’s Office Faculty Recruitment Committee is another example of Dr. Robinson’s enduring impact on the SOM mission.

Over the past 19 years, Dr. Robinson has been pursuing both his professional career and his ministerial calling. In spite of the demands and challenges of his full-time professional career, he managed to devote time to a number of ministe- rial opportunities and responsibilities. He has ministered throughout the US and Canada but concentrates most of his ministerial and pastoral care work in Baltimore, in Lanham, Md., and on the Eastern Shore, where he resides. With his retirement from his professional career at the SOM, Dr. Robinson will transition to the next chapter of his life. He now looks forward to responding to the next challenge and the rewards that come as a result of continued service. “I guess, in the end, you could say that my career has been about saying ‘yes’ to whatever challenges came along,” he said. “I wasn’t sure where it would lead me, but when I think about it, I am exactly where I should be!”