

How to review a scientific paper: *a brief overview*

Wholly based on lecture notes of:

Michael Mazzeffi MD MPH

Assistant Professor

Department of Anesthesiology

University of Maryland School of Medicine

Baltimore, Maryland

Anatomy of a paper

- Introduction-
- Methods-
- Results-
- Discussion-

Anatomy of a paper

- Introduction-
 - What is known/unknown?
 - Why is the question important?
 - What will the study add to the literature?

Anatomy of a paper

- Introduction-
 - What is known/unknown?
 - Why is the question important?
 - What will the study add to the literature?
- Methods-
 - Observational?
 - Interventional?
 - Lab based?

Anatomy of a paper

- Introduction-
 - What is known/unknown?
 - Why is the question important?
 - What will the study add to the literature?
- Methods-
 - Observational?
 - Interventional?
 - Lab based?
- Results-
 - Tables?
 - Figures?
 - Sound statistical methods?

Anatomy of a paper

- Introduction-
 - What is known/unknown?
 - Why is the question important?
 - What will the study add to the literature?
- Methods-
 - Observational?
 - Interventional?
 - Lab based?
- Results-
 - Tables?
 - Figures?
 - Sound statistical methods?
- Discussion-
 - How are the findings explained?
 - Is there biologic plausibility?
 - What is the next logical step based on the study findings?

Your role as a reviewer

Perform the “*sniff test*” (it’s the first read-through!)

- Is the manuscript :
 - **believable?**
 - **well-written?**
 - **well-referenced?**
 - **appropriate visuals?**

Your role as a reviewer

The first read-through

Perform the “*sniff test*”

- Is this manuscript **believable**?
 - you were chosen for **your expertise** in the field
 - we all have an **open-mind** to new ideas, but...
 - are the results just so unbelievable...?

Your role as a reviewer

The first read-through

Perform the “*sniff test*”

- Is this manuscript **well-written?**
 - **follows** instructions for authors **template?**
 - word count
 - section headings
 - English **grammar!**
 - **spelling** errors?
 - **typographical** errors?

Your role as a reviewer

The first read-through

Perform the “*sniff test*”

- References
 - **up-to-date** or from the last century?
 - **relevant** or just strength in numbers?
 - **primary** or secondary (reviews or textbooks) ?
 - are **cross-references correct?**
 - **follow** instructions for authors **template?**

Your role as a reviewer

The first read-through

Perform the “*sniff test*”

- Visual data (figures, charts, tables, photographs)
 - appropriate or unnecessary?
 - clear or confusing?
 - easy-to-read?
 - well-captioned/legend?
 - referenced?

Your role as a reviewer

Prepare for the second read-through

- Science requires an unbiased referee to ensure:
 - validity
 - avoid favoritism
 - catch *false research* (yes, it happens!).

Your role as a reviewer

Prepare for the second read-through

- Science requires an unbiased referee
- Improve the quality of a good study
 - *(and make it a great study!)*

Your role as a reviewer

Prepare for the second read-through

- Science requires an unbiased referee to ensure validity, avoid favoritism, and catch false research (yes, it happens!)
- Improve the quality of a good study
- Help weed out “bad papers” for further serious consideration at busy journals.

Your role as a reviewer

Prepare for the second read-through

What is **the question** being studied?

- Is the answer really that **important**?
- Is hypothesis **clearly stated**?
- **Breaking new ground** or “same ol’, same ol’? ”

Your role as a reviewer
Prepare for the second read-through

Study Methods

- Valid and **robust**?
- Retrospective vs Prospective?
- **Appropriate stats** – sufficient **power**?
- **Biases** eliminated?
- Is **data accurate** – errors in collection?

Your role as a reviewer
Prepare for the second read-through

Conclusions

Supported by data?

Alternative explanations presented?

Discussion of strengths and weaknesses included?

Your role as a reviewer
Prepare for the second read-through
Specific: Observational studies

- **Retrospective vs. Prospective?**
- **Design:**
 - Cohort ? Case-control? Case series? Quasi-experimental design?
- Reference the STROBE statements for observational studies.
(many high quality journals now require this!)
- **Control for confounding?**
 - Multivariate regression, propensity score analysis, etc..
- **Conclusion**
 - appropriately stated or overstated?
 - association vs. causation?

Your role as a reviewer
Prepare for the second read-through

Specific: Clinical trials

- Was the trial well designed?
- Was the *a priori* outcome stated clearly?
- Was there appropriate sample size for comparing the outcome of interest?
- If there was randomization, did it work?
- How did the study deal with:
 - dropout?
 - loss to follow-up?
 - other biases?

The second read-through

Statistics 101

- for most of us, statistics *are not* our forte
- editor can/has requested a **statistical review**
 - you should have a **basic understanding**
 - you can **comment to the editor** on the need for review
 - **quick review on slides** *at end of this presentation*

During / after the second read-through

- Take notes to prepare for your review,
so that you can:
 - construct **positive and negative** comments
 - **Organize** your points **clearly and logically**
 - **Refer:** page/paragraph/line or page/figure

After the second read-through

Your review:

- follow the **instructions** to reviewers
 - summary statement and **comments to editor**
 - summary statement and **comments to authors**

Your review:

Comments to the editors

(~200 words)

- summary statement
- main criticisms
- recommendations

Your review:

Comments to the editors

(~200 words)

- **Summary statement** (briefly!) restates the:
 - hypothesis
 - study design
 - findings
 - authors' conclusions

Your review: Comments to the editors

- **Main criticisms :**
 - descending order of importance
 - categorize as correctable or not

Your review: Comments to the editors

- **Recommendations**
 - Accept – why?
 - Accept with revisions
 - Reject (why?)

Your review:

Comments to the authors

(~1500 word limit)

- restate **summary statement**
- **general statement**
 - impact on you
 - *mea culpa* statement (if any)
 - e.g., "...I review this research paper as a clinician..."
- **major comments**
- **minor comments**

Your review:

Comments to the authors

(~1500 word limit)

- Major comments
 - statements of fact
 - clear
 - logical
 - supported
 - positive and negative comments
 - negative statements should be constructive

Your review:
Comments to the authors
(~1500 word limit)

- Minor comments
 - grammar / typos / cross-reference mistakes
 - refer: page/paragraph/line or page/figure

Your review: general thoughts

Write as you are demanding from the authors:

English grammar

correct spelling

eliminate typographical errors

Be **constructive**

Be **respectful**

“...you were there once ... you will be there again!”

Your review: general thoughts

Be timely in your reviews
(if you want to be asked to review in the future)

Helpful References

Hopkin FG: How I review an original scientific article. Am J Respir Crit Care Med 2002;166:1019-1023

Nicholas KA, Gordon W: A quick guide to writing a solid peer review. EOS 201; 92:233-40

The second read-through

Statistics 101

- Variables are **continuous** or **categorical**

Comparing continuous variables

2 variables:

normally distributed data - T tests

skewed data - Wilcoxon Rank Sums

>2 variables:

normally distributed data - ANOVA

skewed data- Kruskal Wallis

Statistics 101

Comparing categorical variables

Chi-Square test or Fisher's exact test

Statistics 101

- Regression:
 - linear
 - logistic
 - Poisson

Statistics 101

Regression

- **Linear regression:**
 - modeling a **continuous outcome variable**
(e.g., post op hemoglobin)

Statistics 101

Regression

- **Logistic** regression:
 - modeling a **dichotomous outcome**
 - (e.g., mortality)

Statistics 101

Regression

- **Poisson regression:**
 - modeling **counts**
 - (e.g., transfused RBC units)

Statistics 101

Regression

- Regression: linear, logistic or Poisson
- was the **model reasonable?**
- how did the authors **select covariates?**

Statistics 101

- **Survival analysis** - “Time to event analysis”

Statistics 101
survival analysis

Kaplan-Meier

- compares 2 or 3 groups at a point in time
- usually use the log-rank test to compare survival
- allows for “censoring”(i.e., loss to follow-up of individuals)

Statistics 101
survival analysis

Cox Proportional Hazards model

Evaluates impact of different variables
on
survival time.

Statistics 101

Presentation of Data

Confidence intervals

- critical information
 - where the estimated parameter would lie with repeated sampling
- should be 95% or even 99%
 - especially if the question is a really important one

Statistics 101

Presentation of Data

p - values

- tell you:
 - nothing about size of the effect
 - likelihood of getting a particular ...or more extreme value
(given that the null hypothesis is true)

How to review a scientific paper: *a brief overview*

Based on lecture notes of:
Michael Mazzeffi MD MPH
Assistant Professor
Department of Anesthesiology
University of Maryland School of Medicine
Baltimore, Maryland

Edited:
Peter Rock MD MBA
Andrew M. Malinow MD