MISSION
The University of Maryland Greenebaum Comprehensive Cancer Center Translational Shared Service (TLSS) offers pre-clinical and clinical experimental support to basic researchers and physicians in the UMGCCC community. We work in areas across the entire spectrum: cell biology, in vitro, in vivo and human trials.

CORE RESOURCES
- Access to 50+ human cell lines
- Luciferase-expressing breast, leukemia, ovarian and prostate cancer cell lines
- IACUC approved umbrella protocol
- Access/Knowledge in Using Xenogen/IVIS Imaging Mice
- Primary Xenograft Models
 - Breast
 - Leukemia (under development)
 - Ovarian (under development)
Access to IRB approved protocol for tissue acquisition

Clinical Trial Support
We isolate:
- Plasma
- Serum
- Tumor Biopsy
- Whole Blood (isolation of PBMC, DNA, RNA, protein)
- Bone Marrow (isolation of marrow cells)
- Buccal Mucosa

CORE SERVICES
In Vitro Assays
- IC50 generation
- Cell cycle (propidium iodide)
- Viability (trypan blue exclusion)
- Apoptosis
- Potentiation/Synergy
- ROS
- Western Analysis
- Angiogenesis
- Mycoplasma testing

Xcelligence
- Real time proliferation/invasion/migration

In Vivo Assays
- IACUC approved umbrella protocol
- Tolerability
- Tumor Growth
- Pharmacokinetics: generation of plasma
- Efficacy (flank models)
- Efficacy (orthotopic models)
- Pharmacodynamic Endpoints
- Imaging of cells with Xenogen System

Pharmacodynamic (PD) Endpoints
- in-patient samples, tumor or surrogate tissues, preclinical samples
- Endpoint dependent on target (e.g., ELISA, flow cytometry, Western, unique assay)
Combination BMN673 and 5-Azacytidine inhibit leukemia growth in NSG mice. Female NSG mice were injected intravenously with 1x10^6 cells human MV4-11-luc acute myelogenous leukemia cells. After engraftment, mice were sorted into 4 groups of 5 mice and treatment started. Mice received either vehicle, BMN 673 (oral dailyx5), 5-azacytidine (SC dailyx5) or the combination. The mice were imaged weekly on the Xenogen IVIS imaging system in the Imaging Core. Leukemia burden is depicted by quantity by color in order from high to low (red, orange, green, blue).

Dichloroacetate (DCA) augments Reactive Oxygen Species (ROS) production in the presence of arsenic trioxide (ATO) in human MOLM-14 acute myelogenous leukemia cells. Cells were stained with 5 uM CM-H2DCFDA dye, plated in a 96 well format and then exposed to either Vehicle, DCA, ATO or their combination for 24 and 48 hours. ROS generation is monitored over time on the Biotek Synergy HT reader at 480/528 nm.