Clinical Evaluation
Phases 1,2,3,4

Matt Laurens, MD MPH
Associate Professor of Pediatrics
Center for Vaccine Development
Institute for Global Health
University of Maryland School of Medicine
February 1, 2017
Objectives

- List five major parties involved in performing clinical trials
- List three requirements that all vaccines must have documented prior to licensure
- State the number of volunteers and objective of each phase (1-4) of vaccine trials
- Appreciate the complexity and cost of performing a clinical trial
Definitions

Clinical Trial - not just any trial involving humans, but trial to evaluate the safety and efficacy of medications or medical devices

Drug - a substance used to treat an illness, relieve a symptom, or modify a chemical process in the body for a specific purpose

Biological - pertaining to biology or to life and living things

Vaccine - antigenic material administered to stimulate an immune response to achieve a desired effect

Efficacy - capacity to produce a desired effect in a clinical trial

Effectiveness - capacity to produce a desired effect in the real world
Clinical Trial Phases

• Phase 1: “N” in tens; safety
• Phase 2: “N” in hundreds; safety & immunogenicity
• Phase 3: “N” in thousands; safety & efficacy
• Phase 4: “N” in hundreds of thousands and millions post-licensure; safety & other
Who are the major parties?

• All are engaged in the research
• Sponsor
• Investigator
• Regulatory Agency
 • Food and Drug Administration (FDA)
 • European Medicines Agency (EMEA)
• Investigational Review Board
• Volunteer
Considerations of Sponsor

- Problem
- Vaccine part of solution
- Vaccine design plausible
- Expect vaccine safe
- Expect vaccine immunogenic
- Expect vaccine works
- Formulation practical
- Manufacture possible
- Market receptive

Estimated distribution of rotavirus deaths
Responsibilities of Sponsor

- FDA compliance
- Protocol generation
- Investigational New Drug (IND) application and maintenance
- Investigator selection
- Investigator brochure
- Monitoring
 - Safety
 - Data
- FDA communication
Protocol

- Purpose and objectives
- Background
- Information on protective immunity
- Number of participants
- Eligibility criteria
- Trial design
- Dose and method of administration
- Outcomes
- Statistical tests
- Follow-up and risk reduction
Consent

- Informed
- It’s a process
- Non-coercive
- Clear and simple (7th grade)
- Written
- Purpose, procedure, experimental nature
- Discomforts and risks
- Alternatives
- Contact information
- Freedom to withdraw
Records

- Uniform across sites
- Case Report Forms (CRFs)
- Source documents
- Privacy
- Quality Management Plan
- Data Management Plan
- Vaccine accountability
- Vaccine storage
- Specimen shipping
- SOPs and MOPs
Safety Monitoring

- Independent Safety Monitor (ISM)
- Safety Monitoring Committee (SMC)
- Data Safety Monitoring Board (DSMB)

- Adverse Events (AEs)
- Serious Adverse Events (SAEs)
Data Monitoring

• Audit trial documents or facilities
• Meet investigators before trial
• Provide feedback during trial
• Review at trial termination
Considerations of Investigators

• Assess if ethical to proceed
 – Safe?
 • more info in phase 3 than 1
 • Relative safety
 – Likely to be efficacious?
 – Would give to self or family?

• Know the study
 – Protocol
 – ICF
 – IB
Responsibilities of Investigators

- IRB approval
- IRB communication
- Record keeping
- Report AEs and SAEs
- Perform trial: vaccinate and follow
- Proof of Good Clinical Practice (GCP)
Considerations of Regulatory Agency

GXP: manufacturing, clinical, laboratory, statistical?

A vaccine must have documented evidence that it is:

- Safe
- Immunogenic
- Efficacious

Also weigh in on:

- Product Development Plan
- Clinical Development Plan
- Post-licensure
Sample Clinical Development Plan

- PG545 development plan, IND strategy: H2 2008
- Small molecule heparanase inhibitor discovery program: H2 2008
- PI-88 Melanoma trial: H1 2009
- PG11047 Phase I results: H2 2009
- Epigenetic platform first candidate clinical trial start: H2 2009
- Anti-proliferation platform clinical development expansion: H2 2009 and on-going
- Epigenetics platform lead candidates selection and progression: H2 2009 and on-going
- PG11047 Phase II commencement: H1 2010
- Epigenetics Phase II commencement: H1 2011
- PI-88 Phase III trial results: 2011
- PI-88 Market launch: 2011 / 2012
- New Technology in-licensing: As occur
- M&A growth opportunities: As occur
Fig. 1. The timeline for development of RTS,S through 2015 spans 30 years. The effort by GlaxoSmithKline (GSK) can be traced back to a collaboration with Walter Reed Army Institute of Research (WRAIR) initiated in 1984.

David C. Kaslow, Sophie Biernaux

RTS,S: Toward a first landmark on the Malaria Vaccine Technology Roadmap

Vaccine, Volume 33, Issue 52, 2015, 7425–7432

http://dx.doi.org/10.1016/j.vaccine.2015.09.061
Responsibility of regulatory agency

- Protect Public Health
 - Assure safety and efficacy
 - Drugs, biologicals, medical devices, and food
Responsibility of regulatory agency

- Code of Federal Regulations (CFR)
 - 45 CFR part 46 - DHHS protection of human subjects
 - 21 CFR parts
 - Part 11 - Electronic Records; Electronic Signatures
 - Part 50 - Protection of Human Subjects
 - Part 54 - Financial Disclosure by Clinical Investigators
 - Part 56 - Institutional Review Boards
 - Part 312 - Investigational New Drug Application (IND)
 - Part 314 - Applications for New Drug (NDA)
 - Part 600 - Biological Products
 - Part 812 - Investigational Device Exemptions
IND

– 1572: investigator agreement to comply
– Investigator CVs
– Chemistry, manufacturing, control
– Pharmacology and toxicology
– Previous human experience
– Updates while “under IND”
– Reports to all “under IND”
Considerations of the IRB

- Is the research feasible?
- Does the investigator have adequate expertise?
- Is the study scientifically sound?
- Inclusion/exclusion justifiable?
- Is consent obtained?
- Is the risk appropriate and minimized?
Responsibilities of the IRB

• Review and approve research
• At least 5 people
• At least 1 non-scientist
• At least 1 not affiliated with the institution
Considerations of volunteer

• Is the vaccine safe?
 – To me
 – To others

• Will there be any benefit to me?
 – Medical
 – Financial - should not be coercive
Responsibilities of volunteer

- Protocol specific
- Honesty
- Follow-up visits
Resources Required

• Clinic and office space (sometimes inpatient)
• Vaccine and specimen storage area
• Emergency equipment
• Experts
 – Clinical team
 – Vaccines
 – Data management
 – Regulatory affairs and clinical monitoring
 – Microbiology lab
 – Immunology lab
Phase I

- First use in humans
- Few volunteers (10’s)
- Healthy adults
- Purpose = safety
- Risk to benefit is high
- Screening very strict
- Monitoring is frequent, intense
Phase I Vaccine Trials at CVD

- Anthrax
- Avian influenza
- Malaria
- Shigella

- Intranasal Measles
- Ebola
- Zika
Phase I *Shigella*

- First use in humans CVD 1208S
- 13 volunteers (10 vaccine 3 placebo double-blind)
- Very healthy adults: strict eligibility
- Purpose = safety and dose range $10^7, 10^8, 10^9, 10^{10}$
- Risk to benefit is high
- Inpatient with 6 months of follow-up
Objectives

• Primary
 – Safety - clinical
 – Immunogenicity

• Secondary
 – Dose Response
 – Extent and duration of shedding - micro
<table>
<thead>
<tr>
<th>Day (d)</th>
<th>Vaccine</th>
<th>Admit<sup>k</sup></th>
<th>Antibiotic</th>
<th>Fluid Culture</th>
<th>Culture</th>
<th>IgA<sup>c</sup></th>
<th>Lactoferrin</th>
<th>Serology<sup>d,j</sup> (15 mL)</th>
<th>ASC<sup>e</sup> (35 mL)</th>
<th>ASC homing<sup>f</sup> (50 mL)</th>
<th>WBC w/diff<sup>g</sup> (5 mL)</th>
<th>CMI<sup>g,j</sup> (50 mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-30 to -2</td>
<td>-2</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2 to -1</td>
<td>-2 to -1</td>
<td>Psychological interview, subject test, stool IgA, stool culture, fecal lactoferrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>D/C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 ±2d</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21 ±2d</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28 ±3d</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42 ±3d</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>180 ±1mo</td>
<td>180 ±1mo</td>
<td>Telephone to assess occurrence of fever, Reiters symptoms, persistent/recurrent diarrhea, hospitalization, medications, medical visits, serious medical concerns</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Phase I

What do you know after your phase I trial?

• Are there any common serious adverse events that preclude further development?
• Are the limited immune response data enough to encourage further trials?
Safety Monitoring *Shigella*

- SMC
 - Local Infectious Disease expert
 - NIH representative
 - Expert at another university
- Met before each dose escalation
- Reviewed data and deliberated
- Approved escalations
Phase II

- May be multiple studies
- Each has specific endpoints
- Larger numbers of volunteers (50-100’s)
- Examples of questions: dose, formulation, regimen, target groups
- Accumulation of safety data
Phase II *Shigella*

- 60 volunteers (50 vaccine and 10 placebo)
- Main question of timing of dosing: 1, 2, and 3mo
- Eligibility minus HLAB27
- Purpose immunogenicity after 3 doses 10^9
- Risk to benefit is slightly lower
- Outpatient and follow 6 months
Phase IIb

• Special type of phase II study
• Human challenge study
• Efficacy tested using small numbers of volunteers
Phase IIb *Shigella*

- Inpatient
- Challenge with wildtype *Shigella*
- 15 vaccine recipients, 15 placebo
- Observe 2 weeks inpatient
- 42 days outpatient
- Phone call 90 days
Phase II

What do you know after your phase II trial?

• Continued safety and acceptability
• Immune response of formulation and dose regimen
• Shedding
• Efficacy in controlled challenge setting
Phase III Trials

• Typically the pivotal trial for licensure
 – Data supports recommended uses
• Large sample sizes
• Most common objective
 – Efficacy
• Other objectives
 – Immune correlate of protection
 – Safety: less common events
Phase III Trials

• Design
 – Typically randomized controlled trial
 – Comparator: placebo or other vaccine

• Primary outcomes
 – Incidence of disease in both groups
 – Incidence of adverse events

• Vaccine Efficacy
 – \([\frac{\text{Inc}_{\text{control}} - \text{Inc}_{\text{vaccine}}}{\text{Inc}_{\text{control}}}] \times 100\%\)
Phase III Trials

• Efficacy issues
 – Subgroup efficacy importance
 • Gender, age, etc.
 – Efficacy of different disease outcomes
 • Culture-proven, probable, hospitalized, etc.
Phase III Trials

• Sample size
 – Must know control incidence and desired efficacy to determine sample size with given power
 – Build in
 • Drop out rate
 • Deviations from protocol

• Vaccine
 – Final formulation
Phase III Trials

• Eligibility criteria require balance
 – If too strict, limited indication
 – If too loose, jeopardize licensure

• Outcome measure
 – Strict definition for disease of interest
 – Capacity to capture all cases with equal probability
Trial of Rotavirus Vaccine in Africa

A double-blind, randomized, controlled Phase III study to assess the efficacy of 3 doses of Rotateq to prevent severe rotavirus gastroenteritis in African infants.
Phase III study

• We conducted a large double-blind, placebo-controlled, randomized clinical trial to evaluate the efficacy of three doses of pentavalent rotavirus vaccine (PRV), RotaTeq® (Merck & Co., Inc., Whitehouse Station, NJ)
 – Primary objective: Efficacy against severe RVGE, regardless of rotavirus serotype
 – Secondary objectives: Efficacy against (1) RVGE of any severity, (2) severe RVGE by individual rotavirus serotypes, (3) severe gastroenteritis (GE) of any etiology, and (4) severe RVGE using different severity score cut-points as measured with the Vesikari (VSS) and Clark (CSS) scoring systems
Study Design

Pivotal Phase III efficacy study
• Multi-center, double blind, controlled, randomized
• Enrollment: 4568 infants
• Study duration for each subject: 20 months
• Two study groups:
 • Rotateq
 • Placebo
• Catchment design for all cases of gastroenteritis
• Collect clinical severity information to classify cases
• Compare incidence in vaccine vs placebo
Efficacy

<table>
<thead>
<tr>
<th>RVGE</th>
<th>Year 1 Efficacy (95% CI)</th>
<th>Year 2 Efficacy (95% CI)</th>
<th>Total Follow-up Period Efficacy (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe*</td>
<td>64.2% (40.2, 79.4)</td>
<td>19.6% (<0.0, 44.4)</td>
<td>39.3% (19.1, 54.7)</td>
</tr>
<tr>
<td>Any severity</td>
<td>49.2% (29.9, 63.6)</td>
<td>19.0% (<0.0, 35.4)</td>
<td>30.5% (16.7, 42.2)</td>
</tr>
</tbody>
</table>

*Vesikari score of ≥ 11
Phase III

What do you know after your phase III trial?

• Continued safety and acceptability
• Does the vaccine work in natural setting
• What immune response is protective
Phase IV Trials

• Post-licensure
• Some reasons for Phase IV trials
 – Real world issues - effectiveness
 – Expanded spectrum of recipients
 – Vaccine coverage
 – Optimize schedule or dose
 – Rare adverse event detection
 – Administration with other vaccines
 – Indirect protection
 – Ecology, e.g., serotype replacement
Introduction of Hib vaccine in Mali

75% - 81% vaccine effectiveness
Vaccine coverage

B

% with PRP antibody concentration

Unk doses (n=5)
1 dose (n=7)
2 doses (n=22)
3 doses (n=146)
Helpful links:

- http://www.hhs.gov/ohrp/
- http://www.fda.gov/
- http://www.umaryland.edu/hrp/
- http://www.ich.org
- http://www.ecfr.gov
- www.clinicaltrials.gov
- https://www.cdc.gov/vaccines/basics/test-approve.html
Thank You!